Пример #1
0
def G(age, Z, iso):
    """G for a given age and metallicity"""
    Zs = iso.Zs()
    tZ = Zs[numpy.argmin(numpy.fabs(Z - Zs))]
    p = iso(age, tZ)
    jk = p["J"] - p["Ks"]
    indx = (
        (jk < 0.8)
        * (jk > 0.5)
        * (tZ <= 0.06)
        * (tZ <= rc.jkzcut(jk, upper=True))
        * (tZ >= rc.jkzcut(jk))
        * (p["logg"] >= rc.loggteffcut(10.0 ** p["logTe"], tZ, upper=False))
        * (p["logg"] <= rc.loggteffcut(10.0 ** p["logTe"], tZ, upper=True))
    )
    outG = G_jordi(p["g"], p["g"] - p["z"])
    # Average over the IMF
    sindx = numpy.argsort(p["M_ini"])
    outG = outG[sindx]
    int_IMF = p["int_IMF"][sindx]
    w = (numpy.roll(int_IMF, -1) - int_IMF) / (int_IMF[-1] - int_IMF[0])
    w = w[indx]
    outG = outG[indx]
    return (
        numpy.nansum(w * outG) / numpy.nansum(w),
        numpy.sqrt(numpy.nansum(w * outG ** 2.0) / numpy.nansum(w) - (numpy.nansum(w * outG) / numpy.nansum(w)) ** 2.0),
    )
Пример #2
0
def G(age, Z, iso):
    """G for a given age and metallicity"""
    Zs = iso.Zs()
    tZ = Zs[numpy.argmin(numpy.fabs(Z - Zs))]
    p = iso(age, tZ)
    jk = p['J'] - p['Ks']
    indx= (jk < 0.8)*(jk > 0.5)\
        *(tZ <= 0.06)\
        *(tZ <= rc.jkzcut(jk,upper=True))\
        *(tZ >= rc.jkzcut(jk))\
        *(p['logg'] >= rc.loggteffcut(10.**p['logTe'],tZ,upper=False))\
        *(p['logg'] <= rc.loggteffcut(10.**p['logTe'],tZ,upper=True))
    outG = G_jordi(p['g'], p['g'] - p['z'])
    # Average over the IMF
    sindx = numpy.argsort(p['M_ini'])
    outG = outG[sindx]
    int_IMF = p['int_IMF'][sindx]
    w = (numpy.roll(int_IMF, -1) - int_IMF) / (int_IMF[-1] - int_IMF[0])
    w = w[indx]
    outG = outG[indx]
    return (numpy.nansum(w * outG) / numpy.nansum(w),
            numpy.sqrt(
                numpy.nansum(w * outG**2.) / numpy.nansum(w) -
                (numpy.nansum(w * outG) / numpy.nansum(w))**2.))
Пример #3
0
def make_rcsample(parser):
    options,args= parser.parse_args()
    savefilename= options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename= os.path.join(appath._APOGEE_DATA,
                                   'rcsample_'+appath._APOGEE_REDUX+'.fits')
        print "Saving to %s ..." % savefilename
    #Read the base-sample
    data= apread.allStar(adddist=_ADDHAYDENDIST,rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data= esutil.numpy_util.remove_fields(data,
                                          ['TARGET_ID',
                                           'FILE',
                                           'AK_WISE',
                                           'SFD_EBV',
                                           'SYNTHVHELIO_AVG',
                                           'SYNTHVSCATTER',
                                           'SYNTHVERR',
                                           'SYNTHVERR_MED',
                                           'RV_TEFF',
                                           'RV_LOGG',
                                           'RV_FEH',
                                           'RV_CCFWHM',
                                           'RV_AUTOFWHM',
                                           'SYNTHSCATTER',
                                           'CHI2_THRESHOLD',
                                           'APSTAR_VERSION',
                                           'ASPCAP_VERSION',
                                           'RESULTS_VERSION',
                                           'REDUCTION_ID',
                                           'SRC_H',
                                           'PM_SRC'])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data= esutil.numpy_util.remove_fields(data,
                                              ['ELEM'])
    #Select red-clump stars
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    if appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        from apogee.tools import paramIndx
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg= (1.-0.042)*data['FPARAM'][:,paramIndx('logg')]-0.213
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.255
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg= (1.+0.03)*data['FPARAM'][:,paramIndx('logg')]-0.37
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.34
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.256
    else:
        logg= data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data= data[indx]
    #Add more aggressive flag cut
    data= esutil.numpy_util.add_fields(data,[('ADDL_LOGG_CUT',numpy.int32)])
    data['ADDL_LOGG_CUT']= ((data['TEFF']-4800.)/1000.+2.75) > data['LOGG']
    if options.loggcut:
        data= data[data['ADDL_LOGG_CUT'] == 1]
    print "Making catalog of %i objects ..." % len(data)
    #Add distances
    data= esutil.numpy_util.add_fields(data,[('RC_DIST', float),
                                             ('RC_DM', float),
                                             ('RC_GALR', float),
                                             ('RC_GALPHI', float),
                                             ('RC_GALZ', float)])
    rcd= rcmodel.rcdist()
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    data['RC_DIST']= rcd(jk,z,appmag=data['K0'])*options.distfac
    data['RC_DM']= 5.*numpy.log10(data['RC_DIST'])+10.
    XYZ= bovy_coords.lbd_to_XYZ(data['GLON'],
                                data['GLAT'],
                                data['RC_DIST'],
                                degree=True)
    R,phi,Z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],
                                          XYZ[:,1],
                                          XYZ[:,2],
                                          Xsun=8.,Zsun=0.025)
    data['RC_GALR']= R
    data['RC_GALPHI']= phi
    data['RC_GALZ']= Z
    #Save
    fitsio.write(savefilename,data,clobber=True)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo= apogee.select.apogeeSelect()
        statIndx= apo.determine_statistical(data)
        mainIndx= apread.mainIndx(data)
        data= esutil.numpy_util.add_fields(data,[('STAT',numpy.int32),
                                                 ('INVSF',float)])
        data['STAT']= 0
        data['STAT'][statIndx*mainIndx]= 1
        for ii in range(len(data)):
            if (statIndx*mainIndx)[ii]:
                data['INVSF'][ii]= 1./apo(data['LOCATION_ID'][ii],
                                          data['H'][ii])
            else:
                data['INVSF'][ii]= -1.
    if options.nopm:
        fitsio.write(savefilename,data,clobber=True)       
        return None
    #Get proper motions
    from astroquery.vizier import Vizier
    import astroquery
    from astropy import units as u
    import astropy.coordinates as coord
    pmfile= savefilename.split('.')[0]+'_pms.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        rad= u.Quantity(4./3600.,u.degree)
        v= Vizier(columns=['RAJ2000','DEJ2000','pmRA','pmDE','e_pmRA','e_pmDE'])
        for ii in range(len(data)):
            #if ii > 100: break
            sys.stdout.write('\r'+"Getting pm data for point %i / %i" % (ii+1,len(data)))
            sys.stdout.flush()
            pmdata.RA[ii]= data['RA'][ii]
            pmdata.DEC[ii]= data['DEC'][ii]
            co= coord.ICRS(ra=data['RA'][ii],
                           dec=data['DEC'][ii],
                           unit=(u.degree, u.degree))
            trying= True
            while trying:
                try:
                    tab= v.query_region(co,rad,catalog='I/322') #UCAC-4 catalog
                except astroquery.exceptions.TimeoutError:
                    pass
                else:
                    trying= False
            if len(tab) == 0:
                pmdata.PMMATCH[ii]= 0
                print "Didn't find a match for %i ..." % ii
                continue
            else:
                pmdata.PMMATCH[ii]= len(tab)
                if len(tab[0]['pmRA']) > 1:
                    print "Found more than 1 match for %i ..." % ii
            try:
                pmdata.PMRA[ii]= float(tab[0]['pmRA'])
            except TypeError:
                jj= 1
                while len(tab[0]['pmRA']) > 1 and jj < 4: 
                    trad= u.Quantity((4.-jj)/3600.,u.degree)
                    trying= True
                    while trying:
                        try:
                            tab= v.query_region(co,trad,catalog='I/322') #UCAC-4 catalog
                        except astroquery.exceptions.TimeoutError:
                            pass
                        else:
                            trying= False
                    jj+= 1
                if len(tab) == 0:
                    pmdata.PMMATCH[ii]= 0
                    print "Didn't find a unambiguous match for %i ..." % ii
                    continue               
                pmdata.PMRA[ii]= float(tab[0]['pmRA'])
            pmdata.PMDEC[ii]= float(tab[0]['pmDE'])
            pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA'])
            pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE'])
            if numpy.isnan(float(tab[0]['pmRA'])): pmdata.PMMATCH[ii]= 0
        sys.stdout.write('\r'+_ERASESTR+'\r')
        sys.stdout.flush()
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
    #Match proper motions
    try: #These already exist currently, but may not always exist
        data= esutil.numpy_util.remove_fields(data,['PMRA','PMDEC'])
    except ValueError:
        pass
    data= esutil.numpy_util.add_fields(data,[('PMRA', numpy.float),
                                             ('PMDEC', numpy.float),
                                             ('PMRA_ERR', numpy.float),
                                             ('PMDEC_ERR', numpy.float),
                                             ('PMMATCH',numpy.int32)])
    data['PMMATCH']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA'][m2]= pmdata['PMRA'][m1]
    data['PMDEC'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH'] == 1
    data['PMRA'][True-pmindx]= -9999.99
    data['PMDEC'][True-pmindx]= -9999.99
    data['PMRA_ERR'][True-pmindx]= -9999.99
    data['PMDEC_ERR'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR', numpy.float),
                                             ('GALVT', numpy.float),
                                             ('GALVZ', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],data['PMDEC'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR']= vR
    data['GALVT']= vT
    data['GALVZ']= vZ
    data['GALVR'][True-pmindx]= -9999.99
    data['GALVT'][True-pmindx]= -9999.99
    data['GALVZ'][True-pmindx]= -9999.99
    #Get proper motions
    pmfile= savefilename.split('.')[0]+'_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        rad= u.Quantity(4./3600.,u.degree)
        v= Vizier(columns=['RAJ2000','DEJ2000','pmRA','pmDE','e_pmRA','e_pmDE'])
        for ii in range(len(data)):
            #if ii > 100: break
            sys.stdout.write('\r'+"Getting pm data for point %i / %i" % (ii+1,len(data)))
            sys.stdout.flush()
            pmdata.RA[ii]= data['RA'][ii]
            pmdata.DEC[ii]= data['DEC'][ii]
            co= coord.ICRS(ra=data['RA'][ii],
                           dec=data['DEC'][ii],
                           unit=(u.degree, u.degree))
            trying= True
            while trying:
                try:
                    tab= v.query_region(co,rad,catalog='I/317') #PPMXL catalog
                except astroquery.exceptions.TimeoutError:
                    pass
                else:
                    trying= False
            if len(tab) == 0:
                pmdata.PMMATCH[ii]= 0
                print "Didn't find a match for %i ..." % ii
                continue
            else:
                pmdata.PMMATCH[ii]= len(tab)
                if len(tab[0]['pmRA']) > 1:
                    pass
                    #print "Found more than 1 match for %i ..." % ii
            try:
                pmdata.PMRA[ii]= float(tab[0]['pmRA'])
            except TypeError:
                #Find nearest
                cosdists= numpy.zeros(len(tab[0]['pmRA']))
                for jj in range(len(tab[0]['pmRA'])):
                    cosdists[jj]= cos_sphere_dist(tab[0]['RAJ2000'][jj],
                                                  tab[0]['DEJ2000'][jj],
                                                  data['RA'][ii],
                                                  data['DEC'][ii])
                closest= numpy.argmax(cosdists)
                pmdata.PMRA[ii]= float(tab[0]['pmRA'][closest])
                pmdata.PMDEC[ii]= float(tab[0]['pmDE'][closest])
                pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA'][closest])
                pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE'][closest])
                if numpy.isnan(float(tab[0]['pmRA'][closest])): pmdata.PMMATCH[ii]= 0
            else:
                pmdata.PMDEC[ii]= float(tab[0]['pmDE'])
                pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA'])
                pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE'])
                if numpy.isnan(float(tab[0]['pmRA'])): pmdata.PMMATCH[ii]= 0
        sys.stdout.write('\r'+_ERASESTR+'\r')
        sys.stdout.flush()
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
    #Match proper motions to ppmxl
    data= esutil.numpy_util.add_fields(data,[('PMRA_PPMXL', numpy.float),
                                             ('PMDEC_PPMXL', numpy.float),
                                             ('PMRA_ERR_PPMXL', numpy.float),
                                             ('PMDEC_ERR_PPMXL', numpy.float),
                                             ('PMMATCH_PPMXL',numpy.int32)])
    data['PMMATCH_PPMXL']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA_PPMXL'][m2]= pmdata['PMRA'][m1]
    data['PMDEC_PPMXL'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR_PPMXL'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_PPMXL'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_PPMXL'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH_PPMXL'] == 1
    data['PMRA_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_PPMXL'][True-pmindx]= -9999.99
    data['PMRA_ERR_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_ERR_PPMXL'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR_PPMXL', numpy.float),
                                             ('GALVT_PPMXL', numpy.float),
                                             ('GALVZ_PPMXL', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'],
                                                data['PMDEC_PPMXL'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_PPMXL']= vR
    data['GALVT_PPMXL']= vT
    data['GALVZ_PPMXL']= vZ
    data['GALVR_PPMXL'][True-pmindx]= -9999.99
    data['GALVT_PPMXL'][True-pmindx]= -9999.99
    data['GALVZ_PPMXL'][True-pmindx]= -9999.99
    #Save
    fitsio.write(savefilename,data,clobber=True)
    return None
Пример #4
0
        float(numpy.sum(bloggindx * gloggindx)) * 100. / len(data)))
 print(
     "Future contamination w/ good logg (unbiased, errors 0.2) for just RC in logg range %i / % i = %i%%"
     % (numpy.sum(bloggindx * gloggindx * rcindx), numpy.sum(rcindx),
        float(numpy.sum(bloggindx * gloggindx * rcindx)) * 100. /
        numpy.sum(rcindx)))
 #Select stars to be in the RC from the APOKASC data, then check against
 #evolutionary state
 jk = data['J0'] - data['K0']
 z = isodist.FEH2Z(data['METALS'],
                   zsolar=0.017)  #*(0.638*10.**data['ALPHAFE']+0.372)
 logg = data[kascLoggTag] + numpy.random.normal(
     size=len(data)) * 0.  #can adjust this to look at errors
 indx= (jk < 0.8)*(jk >= 0.5)\
     *(z <= 0.06)\
     *(z <= rcmodel.jkzcut(jk,upper=True))\
     *(z >= rcmodel.jkzcut(jk))\
     *(logg >= 1.8)\
     *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
 #indx*= ((data['TEFF']-4800.)/1000.+2.75) > logg
 #*(logg <= 2.8)
 rckascdata = data[indx]
 rcseismoState = numpy.char.strip(rckascdata[seismoStateTag])
 seismo = True ^ ((rcseismoState == 'UNKNOWN') + (rcseismoState == '-9999'))
 norcseismo= (rcseismoState == 'RGB') \
     + (rcseismoState == 'DWARF/SUBGIANT')
 print(
     "%i / %i = %i%% APOKASC non-CLUMP stars out of all RC stars would be included with good logg"
     % (numpy.sum(norcseismo), numpy.sum(seismo),
        float(numpy.sum(norcseismo)) / numpy.sum(seismo) * 100.))
 #Now, how many of the stars in our RC cut have evol and how many of RGB?
Пример #5
0
def make_rcsample(parser):
    options, args = parser.parse_args()
    savefilename = options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename = os.path.join(
            appath._APOGEE_DATA, 'rcsample_' + appath._APOGEE_REDUX + '.fits')
        print("Saving to %s ..." % savefilename)
    #Read the base-sample
    data = apread.allStar(adddist=_ADDHAYDENDIST, rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data = esutil.numpy_util.remove_fields(data, [
        'TARGET_ID', 'FILE', 'AK_WISE', 'SFD_EBV', 'SYNTHVHELIO_AVG',
        'SYNTHVSCATTER', 'SYNTHVERR', 'SYNTHVERR_MED', 'RV_TEFF', 'RV_LOGG',
        'RV_FEH', 'RV_ALPHA', 'RV_CARB', 'RV_CCFWHM', 'RV_AUTOFWHM',
        'SYNTHSCATTER', 'STABLERV_CHI2', 'STABLERV_RCHI2',
        'STABLERV_CHI2_PROB', 'CHI2_THRESHOLD', 'APSTAR_VERSION',
        'ASPCAP_VERSION', 'RESULTS_VERSION', 'WASH_M', 'WASH_M_ERR', 'WASH_T2',
        'WASH_T2_ERR', 'DDO51', 'DDO51_ERR', 'IRAC_3_6', 'IRAC_3_6_ERR',
        'IRAC_4_5', 'IRAC_4_5_ERR', 'IRAC_5_8', 'IRAC_5_8_ERR', 'IRAC_8_0',
        'IRAC_8_0_ERR', 'WISE_4_5', 'WISE_4_5_ERR', 'TARG_4_5', 'TARG_4_5_ERR',
        'WASH_DDO51_GIANT_FLAG', 'WASH_DDO51_STAR_FLAG', 'REDUCTION_ID',
        'SRC_H', 'PM_SRC'
    ])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and not 'l30' in appath._APOGEE_REDUX \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data = esutil.numpy_util.remove_fields(data, ['ELEM'])
    #Select red-clump stars
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    if 'l30' in appath._APOGEE_REDUX:
        logg = data['LOGG']
    elif appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        from apogee.tools import paramIndx
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg = (1. - 0.042) * data['FPARAM'][:, paramIndx('logg')] - 0.213
            lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1.
            logg[lowloggindx] = data['FPARAM'][lowloggindx,
                                               paramIndx('logg')] - 0.255
            hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8
            logg[hiloggindx] = data['FPARAM'][hiloggindx,
                                              paramIndx('logg')] - 0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg = (1. + 0.03) * data['FPARAM'][:, paramIndx('logg')] - 0.37
            lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1.
            logg[lowloggindx] = data['FPARAM'][lowloggindx,
                                               paramIndx('logg')] - 0.34
            hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8
            logg[hiloggindx] = data['FPARAM'][hiloggindx,
                                              paramIndx('logg')] - 0.256
    else:
        logg = data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data = data[indx]
    #Add more aggressive flag cut
    data = esutil.numpy_util.add_fields(data, [('ADDL_LOGG_CUT', numpy.int32)])
    data['ADDL_LOGG_CUT'] = (
        (data['TEFF'] - 4800.) / 1000. + 2.75) > data['LOGG']
    if options.loggcut:
        data = data[data['ADDL_LOGG_CUT'] == 1]
    print("Making catalog of %i objects ..." % len(data))
    #Add distances
    data = esutil.numpy_util.add_fields(data, [('RC_DIST', float),
                                               ('RC_DM', float),
                                               ('RC_GALR', float),
                                               ('RC_GALPHI', float),
                                               ('RC_GALZ', float)])
    rcd = rcmodel.rcdist()
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    data['RC_DIST'] = rcd(jk, z, appmag=data['K0']) * options.distfac
    data['RC_DM'] = 5. * numpy.log10(data['RC_DIST']) + 10.
    XYZ = bovy_coords.lbd_to_XYZ(data['GLON'],
                                 data['GLAT'],
                                 data['RC_DIST'],
                                 degree=True)
    R, phi, Z = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                             XYZ[:, 1],
                                             XYZ[:, 2],
                                             Xsun=8.,
                                             Zsun=0.025)
    data['RC_GALR'] = R
    data['RC_GALPHI'] = phi
    data['RC_GALZ'] = Z
    #Save
    fitsio.write(savefilename, data, clobber=True)
    # Add Tycho-2 matches
    if options.tyc2:
        data = esutil.numpy_util.add_fields(data, [('TYC2MATCH', numpy.int32),
                                                   ('TYC1', numpy.int32),
                                                   ('TYC2', numpy.int32),
                                                   ('TYC3', numpy.int32)])
        data['TYC2MATCH'] = 0
        data['TYC1'] = -1
        data['TYC2'] = -1
        data['TYC3'] = -1
        # Write positions
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=2', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:Tycho2',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Directly match on input RA
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           usecols=(1, 2, 7, 8, 9))
        iis = numpy.arange(len(data))
        mai = [iis[data['RA'] == ma[ii, 0]][0] for ii in range(len(ma))]
        data['TYC2MATCH'][mai] = 1
        data['TYC1'][mai] = ma[:, 2]
        data['TYC2'][mai] = ma[:, 3]
        data['TYC3'][mai] = ma[:, 4]
        os.remove(posfilename)
        os.remove(resultfilename)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo = apogee.select.apogeeSelect()
        statIndx = apo.determine_statistical(data)
        mainIndx = apread.mainIndx(data)
        data = esutil.numpy_util.add_fields(data, [('STAT', numpy.int32),
                                                   ('INVSF', float)])
        data['STAT'] = 0
        data['STAT'][statIndx * mainIndx] = 1
        for ii in range(len(data)):
            if (statIndx * mainIndx)[ii]:
                data['INVSF'][ii] = 1. / apo(data['LOCATION_ID'][ii],
                                             data['H'][ii])
            else:
                data['INVSF'][ii] = -1.
    if options.nopm:
        fitsio.write(savefilename, data, clobber=True)
        return None
    #Get proper motions, in a somewhat roundabout way
    pmfile = savefilename.split('.')[0] + '_pms.fits'
    if os.path.exists(pmfile):
        pmdata = fitsio.read(pmfile, 1)
    else:
        pmdata = numpy.recarray(
            len(data),
            formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'],
            names=[
                'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR',
                'PMMATCH'
            ])
        # Write positions, again ...
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:UCAC4',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           converters={
                               15: lambda s: float(s.strip() or -9999),
                               16: lambda s: float(s.strip() or -9999),
                               17: lambda s: float(s.strip() or -9999),
                               18: lambda s: float(s.strip() or -9999)
                           },
                           usecols=(4, 5, 15, 16, 17, 18))
        h = esutil.htm.HTM()
        m1, m2, d12 = h.match(data['RA'],
                              data['DEC'],
                              ma[:, 0],
                              ma[:, 1],
                              4. / 3600.,
                              maxmatch=1)
        pmdata['PMMATCH'] = 0
        pmdata['RA'] = data['RA']
        pmdata['DEC'] = data['DEC']
        pmdata['PMMATCH'][m1] = 1
        pmdata['PMRA'][m1] = ma[m2, 2]
        pmdata['PMDEC'][m1] = ma[m2, 3]
        pmdata['PMRA_ERR'][m1] = ma[m2, 4]
        pmdata['PMDEC_ERR'][m1] = ma[m2, 5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile, pmdata, clobber=True)
        #To make sure we're using the same format below
        pmdata = fitsio.read(pmfile, 1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions
    try:  #These already exist currently, but may not always exist
        data = esutil.numpy_util.remove_fields(data, ['PMRA', 'PMDEC'])
    except ValueError:
        pass
    data = esutil.numpy_util.add_fields(data, [('PMRA', numpy.float),
                                               ('PMDEC', numpy.float),
                                               ('PMRA_ERR', numpy.float),
                                               ('PMDEC_ERR', numpy.float),
                                               ('PMMATCH', numpy.int32)])
    data['PMMATCH'] = 0
    h = esutil.htm.HTM()
    m1, m2, d12 = h.match(pmdata['RA'],
                          pmdata['DEC'],
                          data['RA'],
                          data['DEC'],
                          2. / 3600.,
                          maxmatch=1)
    data['PMRA'][m2] = pmdata['PMRA'][m1]
    data['PMDEC'][m2] = pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2] = pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2] = pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx = data['PMMATCH'] == 1
    data['PMRA'][True - pmindx] = -9999.99
    data['PMDEC'][True - pmindx] = -9999.99
    data['PMRA_ERR'][True - pmindx] = -9999.99
    data['PMDEC_ERR'][True - pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR', numpy.float),
                                               ('GALVT', numpy.float),
                                               ('GALVZ', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],
                                                 data['PMDEC'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vR, vT, vZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.025,
        vsun=[-11.1, 30.24 * 8.,
              7.25])  #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR'] = vR
    data['GALVT'] = vT
    data['GALVZ'] = vZ
    data['GALVR'][True - pmindx] = -9999.99
    data['GALVT'][True - pmindx] = -9999.99
    data['GALVZ'][True - pmindx] = -9999.99
    #Get PPMXL proper motions, in a somewhat roundabout way
    pmfile = savefilename.split('.')[0] + '_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata = fitsio.read(pmfile, 1)
    else:
        pmdata = numpy.recarray(
            len(data),
            formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'],
            names=[
                'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR',
                'PMMATCH'
            ])
        # Write positions, again ...
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:PPMXL',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           converters={
                               15: lambda s: float(s.strip() or -9999),
                               16: lambda s: float(s.strip() or -9999),
                               17: lambda s: float(s.strip() or -9999),
                               18: lambda s: float(s.strip() or -9999)
                           },
                           usecols=(4, 5, 15, 16, 19, 20))
        h = esutil.htm.HTM()
        m1, m2, d12 = h.match(data['RA'],
                              data['DEC'],
                              ma[:, 0],
                              ma[:, 1],
                              4. / 3600.,
                              maxmatch=1)
        pmdata['PMMATCH'] = 0
        pmdata['RA'] = data['RA']
        pmdata['DEC'] = data['DEC']
        pmdata['PMMATCH'][m1] = 1
        pmdata['PMRA'][m1] = ma[m2, 2]
        pmdata['PMDEC'][m1] = ma[m2, 3]
        pmdata['PMRA_ERR'][m1] = ma[m2, 4]
        pmdata['PMDEC_ERR'][m1] = ma[m2, 5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile, pmdata, clobber=True)
        #To make sure we're using the same format below
        pmdata = fitsio.read(pmfile, 1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions to ppmxl
    data = esutil.numpy_util.add_fields(data,
                                        [('PMRA_PPMXL', numpy.float),
                                         ('PMDEC_PPMXL', numpy.float),
                                         ('PMRA_ERR_PPMXL', numpy.float),
                                         ('PMDEC_ERR_PPMXL', numpy.float),
                                         ('PMMATCH_PPMXL', numpy.int32)])
    data['PMMATCH_PPMXL'] = 0
    h = esutil.htm.HTM()
    m1, m2, d12 = h.match(pmdata['RA'],
                          pmdata['DEC'],
                          data['RA'],
                          data['DEC'],
                          2. / 3600.,
                          maxmatch=1)
    data['PMRA_PPMXL'][m2] = pmdata['PMRA'][m1]
    data['PMDEC_PPMXL'][m2] = pmdata['PMDEC'][m1]
    data['PMRA_ERR_PPMXL'][m2] = pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_PPMXL'][m2] = pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_PPMXL'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx = data['PMMATCH_PPMXL'] == 1
    data['PMRA_PPMXL'][True - pmindx] = -9999.99
    data['PMDEC_PPMXL'][True - pmindx] = -9999.99
    data['PMRA_ERR_PPMXL'][True - pmindx] = -9999.99
    data['PMDEC_ERR_PPMXL'][True - pmindx] = -9999.99
    #Calculate Galactocentric velocities
    data = esutil.numpy_util.add_fields(data, [('GALVR_PPMXL', numpy.float),
                                               ('GALVT_PPMXL', numpy.float),
                                               ('GALVZ_PPMXL', numpy.float)])
    lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True)
    XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0],
                                 lb[:, 1],
                                 data['RC_DIST'],
                                 degree=True)
    pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'],
                                                 data['PMDEC_PPMXL'],
                                                 data['RA'],
                                                 data['DEC'],
                                                 degree=True)
    vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                              pmllpmbb[:, 0],
                                              pmllpmbb[:, 1],
                                              lb[:, 0],
                                              lb[:, 1],
                                              data['RC_DIST'],
                                              degree=True)
    vR, vT, vZ = bovy_coords.vxvyvz_to_galcencyl(
        vxvyvz[:, 0],
        vxvyvz[:, 1],
        vxvyvz[:, 2],
        8. - XYZ[:, 0],
        XYZ[:, 1],
        XYZ[:, 2] + 0.025,
        vsun=[-11.1, 30.24 * 8.,
              7.25])  #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_PPMXL'] = vR
    data['GALVT_PPMXL'] = vT
    data['GALVZ_PPMXL'] = vZ
    data['GALVR_PPMXL'][True - pmindx] = -9999.99
    data['GALVT_PPMXL'][True - pmindx] = -9999.99
    data['GALVZ_PPMXL'][True - pmindx] = -9999.99
    #Save
    fitsio.write(savefilename, data, clobber=True)
    return None
Пример #6
0
def make_rcsample(parser):
    options,args= parser.parse_args()
    savefilename= options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename= os.path.join(appath._APOGEE_DATA,
                                   'rcsample_'+appath._APOGEE_REDUX+'.fits')
        print("Saving to %s ..." % savefilename)
    #Read the base-sample
    data= apread.allStar(adddist=_ADDHAYDENDIST,rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data= esutil.numpy_util.remove_fields(data,
                                          ['TARGET_ID',
                                           'FILE',
                                           'AK_WISE',
                                           'SFD_EBV',
                                           'SYNTHVHELIO_AVG',
                                           'SYNTHVSCATTER',
                                           'SYNTHVERR',
                                           'SYNTHVERR_MED',
                                           'RV_TEFF',
                                           'RV_LOGG',
                                           'RV_FEH',
                                           'RV_ALPHA',
                                           'RV_CARB',
                                           'RV_CCFWHM',
                                           'RV_AUTOFWHM',
                                           'SYNTHSCATTER',
                                           'STABLERV_CHI2',
                                           'STABLERV_RCHI2',
                                           'STABLERV_CHI2_PROB',
                                           'CHI2_THRESHOLD',
                                           'APSTAR_VERSION',
                                           'ASPCAP_VERSION',
                                           'RESULTS_VERSION',
                                           'WASH_M',
                                           'WASH_M_ERR',
                                           'WASH_T2',
                                           'WASH_T2_ERR',
                                           'DDO51',
                                           'DDO51_ERR',
                                           'IRAC_3_6',
                                           'IRAC_3_6_ERR',
                                           'IRAC_4_5',
                                           'IRAC_4_5_ERR',
                                           'IRAC_5_8',
                                           'IRAC_5_8_ERR',
                                           'IRAC_8_0',
                                           'IRAC_8_0_ERR',
                                           'WISE_4_5',
                                           'WISE_4_5_ERR',
                                           'TARG_4_5',
                                           'TARG_4_5_ERR',
                                           'WASH_DDO51_GIANT_FLAG',
                                           'WASH_DDO51_STAR_FLAG',
                                           'REDUCTION_ID',
                                           'SRC_H',
                                           'PM_SRC'])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and not 'l30' in appath._APOGEE_REDUX \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data= esutil.numpy_util.remove_fields(data,
                                              ['ELEM'])
    #Select red-clump stars
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    if 'l30' in appath._APOGEE_REDUX:
        logg= data['LOGG']
    elif appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        from apogee.tools import paramIndx
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg= (1.-0.042)*data['FPARAM'][:,paramIndx('logg')]-0.213
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.255
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg= (1.+0.03)*data['FPARAM'][:,paramIndx('logg')]-0.37
            lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1.
            logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.34
            hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8
            logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.256
    else:
        logg= data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data= data[indx]
    #Add more aggressive flag cut
    data= esutil.numpy_util.add_fields(data,[('ADDL_LOGG_CUT',numpy.int32)])
    data['ADDL_LOGG_CUT']= ((data['TEFF']-4800.)/1000.+2.75) > data['LOGG']
    if options.loggcut:
        data= data[data['ADDL_LOGG_CUT'] == 1]
    print("Making catalog of %i objects ..." % len(data))
    #Add distances
    data= esutil.numpy_util.add_fields(data,[('RC_DIST', float),
                                             ('RC_DM', float),
                                             ('RC_GALR', float),
                                             ('RC_GALPHI', float),
                                             ('RC_GALZ', float)])
    rcd= rcmodel.rcdist()
    jk= data['J0']-data['K0']
    z= isodist.FEH2Z(data['METALS'],zsolar=0.017)
    data['RC_DIST']= rcd(jk,z,appmag=data['K0'])*options.distfac
    data['RC_DM']= 5.*numpy.log10(data['RC_DIST'])+10.
    XYZ= bovy_coords.lbd_to_XYZ(data['GLON'],
                                data['GLAT'],
                                data['RC_DIST'],
                                degree=True)
    R,phi,Z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],
                                          XYZ[:,1],
                                          XYZ[:,2],
                                          Xsun=8.,Zsun=0.025)
    data['RC_GALR']= R
    data['RC_GALPHI']= phi
    data['RC_GALZ']= Z
    #Save
    fitsio.write(savefilename,data,clobber=True)
    # Add Tycho-2 matches
    if options.tyc2:
        data= esutil.numpy_util.add_fields(data,[('TYC2MATCH',numpy.int32),
                                                 ('TYC1',numpy.int32),
                                                 ('TYC2',numpy.int32),
                                                 ('TYC3',numpy.int32)])
        data['TYC2MATCH']= 0
        data['TYC1']= -1
        data['TYC2']= -1
        data['TYC3']= -1
        # Write positions
        posfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        resultfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        with open(posfilename,'w') as csvfile:
            wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA','DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'],data[ii]['DEC']])
        # Send to CDS for matching
        result= open(resultfilename,'w')
        try:
            subprocess.check_call(['curl',
                                   '-X','POST',
                                   '-F','request=xmatch',
                                   '-F','distMaxArcsec=2',
                                   '-F','RESPONSEFORMAT=csv',
                                   '-F','cat1=@%s' % os.path.basename(posfilename),
                                   '-F','colRA1=RA',
                                   '-F','colDec1=DEC',
                                   '-F','cat2=vizier:Tycho2',
                                   'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Directly match on input RA
        ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1,
                          usecols=(1,2,7,8,9))
        iis= numpy.arange(len(data))
        mai= [iis[data['RA'] == ma[ii,0]][0] for ii in range(len(ma))]
        data['TYC2MATCH'][mai]= 1
        data['TYC1'][mai]= ma[:,2]
        data['TYC2'][mai]= ma[:,3]
        data['TYC3'][mai]= ma[:,4]
        os.remove(posfilename)
        os.remove(resultfilename)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo= apogee.select.apogeeSelect()
        statIndx= apo.determine_statistical(data)
        mainIndx= apread.mainIndx(data)
        data= esutil.numpy_util.add_fields(data,[('STAT',numpy.int32),
                                                 ('INVSF',float)])
        data['STAT']= 0
        data['STAT'][statIndx*mainIndx]= 1
        for ii in range(len(data)):
            if (statIndx*mainIndx)[ii]:
                data['INVSF'][ii]= 1./apo(data['LOCATION_ID'][ii],
                                          data['H'][ii])
            else:
                data['INVSF'][ii]= -1.
    if options.nopm:
        fitsio.write(savefilename,data,clobber=True)       
        return None
    #Get proper motions, in a somewhat roundabout way
    pmfile= savefilename.split('.')[0]+'_pms.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        # Write positions, again ...
        posfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        resultfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        with open(posfilename,'w') as csvfile:
            wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA','DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'],data[ii]['DEC']])
        # Send to CDS for matching
        result= open(resultfilename,'w')
        try:
            subprocess.check_call(['curl',
                                   '-X','POST',
                                   '-F','request=xmatch',
                                   '-F','distMaxArcsec=4',
                                   '-F','RESPONSEFORMAT=csv',
                                   '-F','cat1=@%s' % os.path.basename(posfilename),
                                   '-F','colRA1=RA',
                                   '-F','colDec1=DEC',
                                   '-F','cat2=vizier:UCAC4',
                                   'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1,
                          converters={15: lambda s: float(s.strip() or -9999),
                                      16: lambda s: float(s.strip() or -9999),
                                      17: lambda s: float(s.strip() or -9999),
                                      18: lambda s: float(s.strip() or -9999)},
                          usecols=(4,5,15,16,17,18))
        h=esutil.htm.HTM()
        m1,m2,d12 = h.match(data['RA'],data['DEC'],
                            ma[:,0],ma[:,1],4./3600.,maxmatch=1)
        pmdata['PMMATCH']= 0
        pmdata['RA']= data['RA']
        pmdata['DEC']= data['DEC']
        pmdata['PMMATCH'][m1]= 1
        pmdata['PMRA'][m1]= ma[m2,2]
        pmdata['PMDEC'][m1]= ma[m2,3]
        pmdata['PMRA_ERR'][m1]= ma[m2,4]
        pmdata['PMDEC_ERR'][m1]= ma[m2,5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions
    try: #These already exist currently, but may not always exist
        data= esutil.numpy_util.remove_fields(data,['PMRA','PMDEC'])
    except ValueError:
        pass
    data= esutil.numpy_util.add_fields(data,[('PMRA', numpy.float),
                                             ('PMDEC', numpy.float),
                                             ('PMRA_ERR', numpy.float),
                                             ('PMDEC_ERR', numpy.float),
                                             ('PMMATCH',numpy.int32)])
    data['PMMATCH']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA'][m2]= pmdata['PMRA'][m1]
    data['PMDEC'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH'] == 1
    data['PMRA'][True-pmindx]= -9999.99
    data['PMDEC'][True-pmindx]= -9999.99
    data['PMRA_ERR'][True-pmindx]= -9999.99
    data['PMDEC_ERR'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR', numpy.float),
                                             ('GALVT', numpy.float),
                                             ('GALVZ', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],data['PMDEC'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR']= vR
    data['GALVT']= vT
    data['GALVZ']= vZ
    data['GALVR'][True-pmindx]= -9999.99
    data['GALVT'][True-pmindx]= -9999.99
    data['GALVZ'][True-pmindx]= -9999.99
    #Get PPMXL proper motions, in a somewhat roundabout way
    pmfile= savefilename.split('.')[0]+'_pms_ppmxl.fits'
    if os.path.exists(pmfile):
        pmdata= fitsio.read(pmfile,1)
    else:
        pmdata= numpy.recarray(len(data),
                               formats=['f8','f8','f8','f8','f8','f8','i4'],
                               names=['RA','DEC','PMRA','PMDEC',
                                      'PMRA_ERR','PMDEC_ERR','PMMATCH'])
        # Write positions, again ...
        posfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        resultfilename= tempfile.mktemp('.csv',dir=os.getcwd())
        with open(posfilename,'w') as csvfile:
            wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA','DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'],data[ii]['DEC']])
        # Send to CDS for matching
        result= open(resultfilename,'w')
        try:
            subprocess.check_call(['curl',
                                   '-X','POST',
                                   '-F','request=xmatch',
                                   '-F','distMaxArcsec=4',
                                   '-F','RESPONSEFORMAT=csv',
                                   '-F','cat1=@%s' % os.path.basename(posfilename),
                                   '-F','colRA1=RA',
                                   '-F','colDec1=DEC',
                                   '-F','cat2=vizier:PPMXL',
                                   'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Match back and only keep the closest one
        ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1,
                          converters={15: lambda s: float(s.strip() or -9999),
                                      16: lambda s: float(s.strip() or -9999),
                                      17: lambda s: float(s.strip() or -9999),
                                      18: lambda s: float(s.strip() or -9999)},
                          usecols=(4,5,15,16,19,20))
        h=esutil.htm.HTM()
        m1,m2,d12 = h.match(data['RA'],data['DEC'],
                            ma[:,0],ma[:,1],4./3600.,maxmatch=1)
        pmdata['PMMATCH']= 0
        pmdata['RA']= data['RA']
        pmdata['DEC']= data['DEC']
        pmdata['PMMATCH'][m1]= 1
        pmdata['PMRA'][m1]= ma[m2,2]
        pmdata['PMDEC'][m1]= ma[m2,3]
        pmdata['PMRA_ERR'][m1]= ma[m2,4]
        pmdata['PMDEC_ERR'][m1]= ma[m2,5]
        pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \
                          +(pmdata['PMDEC'] == -9999) \
                          +(pmdata['PMRA_ERR'] == -9999) \
                          +(pmdata['PMDEC_ERR'] == -9999)]= 0
        fitsio.write(pmfile,pmdata,clobber=True)
        #To make sure we're using the same format below
        pmdata= fitsio.read(pmfile,1)
        os.remove(posfilename)
        os.remove(resultfilename)
    #Match proper motions to ppmxl
    data= esutil.numpy_util.add_fields(data,[('PMRA_PPMXL', numpy.float),
                                             ('PMDEC_PPMXL', numpy.float),
                                             ('PMRA_ERR_PPMXL', numpy.float),
                                             ('PMDEC_ERR_PPMXL', numpy.float),
                                             ('PMMATCH_PPMXL',numpy.int32)])
    data['PMMATCH_PPMXL']= 0
    h=esutil.htm.HTM()
    m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'],
                        data['RA'],data['DEC'],
                        2./3600.,maxmatch=1)
    data['PMRA_PPMXL'][m2]= pmdata['PMRA'][m1]
    data['PMDEC_PPMXL'][m2]= pmdata['PMDEC'][m1]
    data['PMRA_ERR_PPMXL'][m2]= pmdata['PMRA_ERR'][m1]
    data['PMDEC_ERR_PPMXL'][m2]= pmdata['PMDEC_ERR'][m1]
    data['PMMATCH_PPMXL'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32)
    pmindx= data['PMMATCH_PPMXL'] == 1
    data['PMRA_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_PPMXL'][True-pmindx]= -9999.99
    data['PMRA_ERR_PPMXL'][True-pmindx]= -9999.99
    data['PMDEC_ERR_PPMXL'][True-pmindx]= -9999.99
    #Calculate Galactocentric velocities
    data= esutil.numpy_util.add_fields(data,[('GALVR_PPMXL', numpy.float),
                                             ('GALVT_PPMXL', numpy.float),
                                             ('GALVZ_PPMXL', numpy.float)])
    lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True)
    XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True)
    pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'],
                                                data['PMDEC_PPMXL'],
                                                data['RA'],data['DEC'],
                                                degree=True)
    vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'],
                                             pmllpmbb[:,0],
                                             pmllpmbb[:,1],
                                             lb[:,0],lb[:,1],data['RC_DIST'],
                                             degree=True)
    vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0],
                                                vxvyvz[:,1],
                                                vxvyvz[:,2],
                                                8.-XYZ[:,0],
                                                XYZ[:,1],
                                                XYZ[:,2]+0.025,
                                                vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc
    data['GALVR_PPMXL']= vR
    data['GALVT_PPMXL']= vT
    data['GALVZ_PPMXL']= vZ
    data['GALVR_PPMXL'][True-pmindx]= -9999.99
    data['GALVT_PPMXL'][True-pmindx]= -9999.99
    data['GALVZ_PPMXL'][True-pmindx]= -9999.99
    #Save
    fitsio.write(savefilename,data,clobber=True)
    return None
                                              upper=True))
 print "Current contamination in logg range %i / % i = %i%%" % (numpy.sum(bloggindx*gloggindx),len(data),float(numpy.sum(bloggindx*gloggindx))*100./len(data))
 nlogg= data[kascLoggTag]+numpy.random.normal(size=len(data))*0.2
 bloggindx= (nlogg >= 1.8)*(nlogg <= rcmodel.loggteffcut(data['TEFF'],
                                                         data['METALS'],
                                                         upper=True))
 print "Future contamination w/ good logg (unbiased, errors 0.2) in logg range %i / % i = %i%%" % (numpy.sum(bloggindx*gloggindx),len(data),float(numpy.sum(bloggindx*gloggindx))*100./len(data))
 print "Future contamination w/ good logg (unbiased, errors 0.2) for just RC in logg range %i / % i = %i%%" % (numpy.sum(bloggindx*gloggindx*rcindx),numpy.sum(rcindx),float(numpy.sum(bloggindx*gloggindx*rcindx))*100./numpy.sum(rcindx))
 #Select stars to be in the RC from the APOKASC data, then check against 
 #evolutionary state
 jk= data['J0']-data['K0']
 z= isodist.FEH2Z(data['METALS'],zsolar=0.017)#*(0.638*10.**data['ALPHAFE']+0.372)
 logg= data[kascLoggTag]+numpy.random.normal(size=len(data))*0. #can adjust this to look at errors
 indx= (jk < 0.8)*(jk >= 0.5)\
     *(z <= 0.06)\
     *(z <= rcmodel.jkzcut(jk,upper=True))\
     *(z >= rcmodel.jkzcut(jk))\
     *(logg >= 1.8)\
     *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
 #indx*= ((data['TEFF']-4800.)/1000.+2.75) > logg
 #*(logg <= 2.8)            
 rckascdata= data[indx]
 rcseismoState= numpy.char.strip(rckascdata[seismoStateTag])
 seismo= True-((rcseismoState == 'UNKNOWN')+(rcseismoState == '-9999'))
 norcseismo= (rcseismoState == 'RGB') \
     + (rcseismoState == 'DWARF/SUBGIANT')
 print "%i / %i = %i%% APOKASC non-CLUMP stars out of all RC stars would be included with good logg" % (numpy.sum(norcseismo),numpy.sum(seismo),float(numpy.sum(norcseismo))/numpy.sum(seismo)*100.)
 #Now, how many of the stars in our RC cut have evol and how many of RGB?
 indx= (jk < 0.8)*(jk >= 0.5)\
     *(logg >= 1.8)\
     *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
Пример #8
0
def make_rcsample(parser):
    options, args = parser.parse_args()
    savefilename = options.savefilename
    if savefilename is None:
        #Create savefilename if not given
        savefilename = os.path.join(
            appath._APOGEE_DATA, 'rcsample_' + appath._APOGEE_REDUX + '.fits')
        print("Saving to %s ..." % savefilename)
    #Read the base-sample
    data = apread.allStar(adddist=_ADDHAYDENDIST, rmdups=options.rmdups)
    #Remove a bunch of fields that we do not want to keep
    data = esutil.numpy_util.remove_fields(data, [
        'TARGET_ID', 'FILE', 'AK_WISE', 'SFD_EBV', 'SYNTHVHELIO_AVG',
        'SYNTHVSCATTER', 'SYNTHVERR', 'SYNTHVERR_MED', 'RV_TEFF', 'RV_LOGG',
        'RV_FEH', 'RV_ALPHA', 'RV_CARB', 'RV_CCFWHM', 'RV_AUTOFWHM',
        'SYNTHSCATTER', 'STABLERV_CHI2', 'STABLERV_RCHI2',
        'STABLERV_CHI2_PROB', 'CHI2_THRESHOLD', 'APSTAR_VERSION',
        'ASPCAP_VERSION', 'RESULTS_VERSION', 'WASH_M', 'WASH_M_ERR', 'WASH_T2',
        'WASH_T2_ERR', 'DDO51', 'DDO51_ERR', 'IRAC_3_6', 'IRAC_3_6_ERR',
        'IRAC_4_5', 'IRAC_4_5_ERR', 'IRAC_5_8', 'IRAC_5_8_ERR', 'IRAC_8_0',
        'IRAC_8_0_ERR', 'WISE_4_5', 'WISE_4_5_ERR', 'TARG_4_5', 'TARG_4_5_ERR',
        'WASH_DDO51_GIANT_FLAG', 'WASH_DDO51_STAR_FLAG', 'REDUCTION_ID',
        'SRC_H', 'PM_SRC'
    ])
    # More
    if appath._APOGEE_REDUX.lower() == 'l33':
        data = esutil.numpy_util.remove_fields(data, [
            'GAIA_SOURCE_ID', 'GAIA_PARALLAX', 'GAIA_PARALLAX_ERROR',
            'GAIA_PMRA', 'GAIA_PMRA_ERROR', 'GAIA_PMDEC', 'GAIA_PMDEC_ERROR',
            'GAIA_PHOT_G_MEAN_MAG', 'GAIA_PHOT_BP_MEAN_MAG',
            'GAIA_PHOT_RP_MEAN_MAG', 'GAIA_RADIAL_VELOCITY',
            'GAIA_RADIAL_VELOCITY_ERROR', 'GAIA_R_EST', 'GAIA_R_LO',
            'GAIA_R_HI', 'TEFF_SPEC', 'LOGG_SPEC'
        ])
    if not appath._APOGEE_REDUX.lower() == 'current' \
            and not 'l3' in appath._APOGEE_REDUX \
            and int(appath._APOGEE_REDUX[1:]) < 500:
        data = esutil.numpy_util.remove_fields(data, ['ELEM'])
    #Select red-clump stars
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    if 'l31' in appath._APOGEE_REDUX:
        logg = data['LOGG']
    elif 'l30' in appath._APOGEE_REDUX:
        logg = data['LOGG']
    elif appath._APOGEE_REDUX.lower() == 'current' \
            or int(appath._APOGEE_REDUX[1:]) > 600:
        if False:
            #Use my custom logg calibration that's correct for the RC
            logg = (1. - 0.042) * data['FPARAM'][:, paramIndx('logg')] - 0.213
            lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1.
            logg[lowloggindx] = data['FPARAM'][lowloggindx,
                                               paramIndx('logg')] - 0.255
            hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8
            logg[hiloggindx] = data['FPARAM'][hiloggindx,
                                              paramIndx('logg')] - 0.3726
        else:
            #Use my custom logg calibration that's correct on average
            logg = (1. + 0.03) * data['FPARAM'][:, paramIndx('logg')] - 0.37
            lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1.
            logg[lowloggindx] = data['FPARAM'][lowloggindx,
                                               paramIndx('logg')] - 0.34
            hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8
            logg[hiloggindx] = data['FPARAM'][hiloggindx,
                                              paramIndx('logg')] - 0.256
    else:
        logg = data['LOGG']
    indx= (jk < 0.8)*(jk >= 0.5)\
        *(z <= 0.06)\
        *(z <= rcmodel.jkzcut(jk,upper=True))\
        *(z >= rcmodel.jkzcut(jk))\
        *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\
        *(logg+0.1*('l31' in appath._APOGEE_REDUX
                    or 'l33' in appath._APOGEE_REDUX) \
              <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
    data = data[indx]
    #Add more aggressive flag cut
    data = esutil.numpy_util.add_fields(data, [('ADDL_LOGG_CUT', numpy.int32)])
    data['ADDL_LOGG_CUT'] = (
        (data['TEFF'] - 4800.) / 1000. + 2.75) > data['LOGG']
    if options.loggcut:
        data = data[data['ADDL_LOGG_CUT'] == 1]
    print("Making catalog of %i objects ..." % len(data))
    #Add distances
    data = esutil.numpy_util.add_fields(data, [('RC_DIST', float),
                                               ('RC_DM', float),
                                               ('RC_GALR', float),
                                               ('RC_GALPHI', float),
                                               ('RC_GALZ', float)])
    rcd = rcmodel.rcdist()
    jk = data['J0'] - data['K0']
    z = isodist.FEH2Z(data['METALS'], zsolar=0.017)
    data['RC_DIST'] = rcd(jk, z, appmag=data['K0']) * options.distfac
    data['RC_DM'] = 5. * numpy.log10(data['RC_DIST']) + 10.
    XYZ = bovy_coords.lbd_to_XYZ(data['GLON'],
                                 data['GLAT'],
                                 data['RC_DIST'],
                                 degree=True)
    RphiZ = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0],
                                         XYZ[:, 1],
                                         XYZ[:, 2],
                                         Xsun=8.15,
                                         Zsun=0.0208)
    R = RphiZ[:, 0]
    phi = RphiZ[:, 1]
    Z = RphiZ[:, 2]
    data['RC_GALR'] = R
    data['RC_GALPHI'] = phi
    data['RC_GALZ'] = Z
    #Save
    fitswrite(savefilename, data, clobber=True)
    # Add Tycho-2 matches
    if options.tyc2:
        data = esutil.numpy_util.add_fields(data, [('TYC2MATCH', numpy.int32),
                                                   ('TYC1', numpy.int32),
                                                   ('TYC2', numpy.int32),
                                                   ('TYC3', numpy.int32)])
        data['TYC2MATCH'] = 0
        data['TYC1'] = -1
        data['TYC2'] = -1
        data['TYC3'] = -1
        # Write positions
        posfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        resultfilename = tempfile.mktemp('.csv', dir=os.getcwd())
        with open(posfilename, 'w') as csvfile:
            wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            wr.writerow(['RA', 'DEC'])
            for ii in range(len(data)):
                wr.writerow([data[ii]['RA'], data[ii]['DEC']])
        # Send to CDS for matching
        result = open(resultfilename, 'w')
        try:
            subprocess.check_call([
                'curl', '-X', 'POST', '-F', 'request=xmatch', '-F',
                'distMaxArcsec=2', '-F', 'RESPONSEFORMAT=csv', '-F',
                'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA',
                '-F', 'colDec1=DEC', '-F', 'cat2=vizier:Tycho2',
                'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'
            ],
                                  stdout=result)
        except subprocess.CalledProcessError:
            os.remove(posfilename)
            if os.path.exists(resultfilename):
                result.close()
                os.remove(resultfilename)
        result.close()
        # Directly match on input RA
        ma = numpy.loadtxt(resultfilename,
                           delimiter=',',
                           skiprows=1,
                           usecols=(1, 2, 7, 8, 9))
        iis = numpy.arange(len(data))
        mai = [iis[data['RA'] == ma[ii, 0]][0] for ii in range(len(ma))]
        data['TYC2MATCH'][mai] = 1
        data['TYC1'][mai] = ma[:, 2]
        data['TYC2'][mai] = ma[:, 3]
        data['TYC3'][mai] = ma[:, 4]
        os.remove(posfilename)
        os.remove(resultfilename)
    if not options.nostat:
        #Determine statistical sample and add flag
        apo = apogee.select.apogeeSelect()
        statIndx = apo.determine_statistical(data)
        mainIndx = apread.mainIndx(data)
        data = esutil.numpy_util.add_fields(data, [('STAT', numpy.int32),
                                                   ('INVSF', float)])
        data['STAT'] = 0
        data['STAT'][statIndx * mainIndx] = 1
        for ii in range(len(data)):
            if (statIndx * mainIndx)[ii]:
                data['INVSF'][ii] = 1. / apo(data['LOCATION_ID'][ii],
                                             data['H'][ii])
            else:
                data['INVSF'][ii] = -1.
    if options.nopm:
        fitswrite(savefilename, data, clobber=True)
        return None
    data = _add_proper_motions(data, savefilename)
    # Save
    fitswrite(savefilename, data, clobber=True)
    return None