def G(age, Z, iso): """G for a given age and metallicity""" Zs = iso.Zs() tZ = Zs[numpy.argmin(numpy.fabs(Z - Zs))] p = iso(age, tZ) jk = p["J"] - p["Ks"] indx = ( (jk < 0.8) * (jk > 0.5) * (tZ <= 0.06) * (tZ <= rc.jkzcut(jk, upper=True)) * (tZ >= rc.jkzcut(jk)) * (p["logg"] >= rc.loggteffcut(10.0 ** p["logTe"], tZ, upper=False)) * (p["logg"] <= rc.loggteffcut(10.0 ** p["logTe"], tZ, upper=True)) ) outG = G_jordi(p["g"], p["g"] - p["z"]) # Average over the IMF sindx = numpy.argsort(p["M_ini"]) outG = outG[sindx] int_IMF = p["int_IMF"][sindx] w = (numpy.roll(int_IMF, -1) - int_IMF) / (int_IMF[-1] - int_IMF[0]) w = w[indx] outG = outG[indx] return ( numpy.nansum(w * outG) / numpy.nansum(w), numpy.sqrt(numpy.nansum(w * outG ** 2.0) / numpy.nansum(w) - (numpy.nansum(w * outG) / numpy.nansum(w)) ** 2.0), )
def G(age, Z, iso): """G for a given age and metallicity""" Zs = iso.Zs() tZ = Zs[numpy.argmin(numpy.fabs(Z - Zs))] p = iso(age, tZ) jk = p['J'] - p['Ks'] indx= (jk < 0.8)*(jk > 0.5)\ *(tZ <= 0.06)\ *(tZ <= rc.jkzcut(jk,upper=True))\ *(tZ >= rc.jkzcut(jk))\ *(p['logg'] >= rc.loggteffcut(10.**p['logTe'],tZ,upper=False))\ *(p['logg'] <= rc.loggteffcut(10.**p['logTe'],tZ,upper=True)) outG = G_jordi(p['g'], p['g'] - p['z']) # Average over the IMF sindx = numpy.argsort(p['M_ini']) outG = outG[sindx] int_IMF = p['int_IMF'][sindx] w = (numpy.roll(int_IMF, -1) - int_IMF) / (int_IMF[-1] - int_IMF[0]) w = w[indx] outG = outG[indx] return (numpy.nansum(w * outG) / numpy.nansum(w), numpy.sqrt( numpy.nansum(w * outG**2.) / numpy.nansum(w) - (numpy.nansum(w * outG) / numpy.nansum(w))**2.))
def make_rcsample(parser): options,args= parser.parse_args() savefilename= options.savefilename if savefilename is None: #Create savefilename if not given savefilename= os.path.join(appath._APOGEE_DATA, 'rcsample_'+appath._APOGEE_REDUX+'.fits') print "Saving to %s ..." % savefilename #Read the base-sample data= apread.allStar(adddist=_ADDHAYDENDIST,rmdups=options.rmdups) #Remove a bunch of fields that we do not want to keep data= esutil.numpy_util.remove_fields(data, ['TARGET_ID', 'FILE', 'AK_WISE', 'SFD_EBV', 'SYNTHVHELIO_AVG', 'SYNTHVSCATTER', 'SYNTHVERR', 'SYNTHVERR_MED', 'RV_TEFF', 'RV_LOGG', 'RV_FEH', 'RV_CCFWHM', 'RV_AUTOFWHM', 'SYNTHSCATTER', 'CHI2_THRESHOLD', 'APSTAR_VERSION', 'ASPCAP_VERSION', 'RESULTS_VERSION', 'REDUCTION_ID', 'SRC_H', 'PM_SRC']) if not appath._APOGEE_REDUX.lower() == 'current' \ and int(appath._APOGEE_REDUX[1:]) < 500: data= esutil.numpy_util.remove_fields(data, ['ELEM']) #Select red-clump stars jk= data['J0']-data['K0'] z= isodist.FEH2Z(data['METALS'],zsolar=0.017) if appath._APOGEE_REDUX.lower() == 'current' \ or int(appath._APOGEE_REDUX[1:]) > 600: from apogee.tools import paramIndx if False: #Use my custom logg calibration that's correct for the RC logg= (1.-0.042)*data['FPARAM'][:,paramIndx('logg')]-0.213 lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1. logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.255 hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8 logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.3726 else: #Use my custom logg calibration that's correct on average logg= (1.+0.03)*data['FPARAM'][:,paramIndx('logg')]-0.37 lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1. logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.34 hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8 logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.256 else: logg= data['LOGG'] indx= (jk < 0.8)*(jk >= 0.5)\ *(z <= 0.06)\ *(z <= rcmodel.jkzcut(jk,upper=True))\ *(z >= rcmodel.jkzcut(jk))\ *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\ *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True)) data= data[indx] #Add more aggressive flag cut data= esutil.numpy_util.add_fields(data,[('ADDL_LOGG_CUT',numpy.int32)]) data['ADDL_LOGG_CUT']= ((data['TEFF']-4800.)/1000.+2.75) > data['LOGG'] if options.loggcut: data= data[data['ADDL_LOGG_CUT'] == 1] print "Making catalog of %i objects ..." % len(data) #Add distances data= esutil.numpy_util.add_fields(data,[('RC_DIST', float), ('RC_DM', float), ('RC_GALR', float), ('RC_GALPHI', float), ('RC_GALZ', float)]) rcd= rcmodel.rcdist() jk= data['J0']-data['K0'] z= isodist.FEH2Z(data['METALS'],zsolar=0.017) data['RC_DIST']= rcd(jk,z,appmag=data['K0'])*options.distfac data['RC_DM']= 5.*numpy.log10(data['RC_DIST'])+10. XYZ= bovy_coords.lbd_to_XYZ(data['GLON'], data['GLAT'], data['RC_DIST'], degree=True) R,phi,Z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0], XYZ[:,1], XYZ[:,2], Xsun=8.,Zsun=0.025) data['RC_GALR']= R data['RC_GALPHI']= phi data['RC_GALZ']= Z #Save fitsio.write(savefilename,data,clobber=True) if not options.nostat: #Determine statistical sample and add flag apo= apogee.select.apogeeSelect() statIndx= apo.determine_statistical(data) mainIndx= apread.mainIndx(data) data= esutil.numpy_util.add_fields(data,[('STAT',numpy.int32), ('INVSF',float)]) data['STAT']= 0 data['STAT'][statIndx*mainIndx]= 1 for ii in range(len(data)): if (statIndx*mainIndx)[ii]: data['INVSF'][ii]= 1./apo(data['LOCATION_ID'][ii], data['H'][ii]) else: data['INVSF'][ii]= -1. if options.nopm: fitsio.write(savefilename,data,clobber=True) return None #Get proper motions from astroquery.vizier import Vizier import astroquery from astropy import units as u import astropy.coordinates as coord pmfile= savefilename.split('.')[0]+'_pms.fits' if os.path.exists(pmfile): pmdata= fitsio.read(pmfile,1) else: pmdata= numpy.recarray(len(data), formats=['f8','f8','f8','f8','f8','f8','i4'], names=['RA','DEC','PMRA','PMDEC', 'PMRA_ERR','PMDEC_ERR','PMMATCH']) rad= u.Quantity(4./3600.,u.degree) v= Vizier(columns=['RAJ2000','DEJ2000','pmRA','pmDE','e_pmRA','e_pmDE']) for ii in range(len(data)): #if ii > 100: break sys.stdout.write('\r'+"Getting pm data for point %i / %i" % (ii+1,len(data))) sys.stdout.flush() pmdata.RA[ii]= data['RA'][ii] pmdata.DEC[ii]= data['DEC'][ii] co= coord.ICRS(ra=data['RA'][ii], dec=data['DEC'][ii], unit=(u.degree, u.degree)) trying= True while trying: try: tab= v.query_region(co,rad,catalog='I/322') #UCAC-4 catalog except astroquery.exceptions.TimeoutError: pass else: trying= False if len(tab) == 0: pmdata.PMMATCH[ii]= 0 print "Didn't find a match for %i ..." % ii continue else: pmdata.PMMATCH[ii]= len(tab) if len(tab[0]['pmRA']) > 1: print "Found more than 1 match for %i ..." % ii try: pmdata.PMRA[ii]= float(tab[0]['pmRA']) except TypeError: jj= 1 while len(tab[0]['pmRA']) > 1 and jj < 4: trad= u.Quantity((4.-jj)/3600.,u.degree) trying= True while trying: try: tab= v.query_region(co,trad,catalog='I/322') #UCAC-4 catalog except astroquery.exceptions.TimeoutError: pass else: trying= False jj+= 1 if len(tab) == 0: pmdata.PMMATCH[ii]= 0 print "Didn't find a unambiguous match for %i ..." % ii continue pmdata.PMRA[ii]= float(tab[0]['pmRA']) pmdata.PMDEC[ii]= float(tab[0]['pmDE']) pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA']) pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE']) if numpy.isnan(float(tab[0]['pmRA'])): pmdata.PMMATCH[ii]= 0 sys.stdout.write('\r'+_ERASESTR+'\r') sys.stdout.flush() fitsio.write(pmfile,pmdata,clobber=True) #To make sure we're using the same format below pmdata= fitsio.read(pmfile,1) #Match proper motions try: #These already exist currently, but may not always exist data= esutil.numpy_util.remove_fields(data,['PMRA','PMDEC']) except ValueError: pass data= esutil.numpy_util.add_fields(data,[('PMRA', numpy.float), ('PMDEC', numpy.float), ('PMRA_ERR', numpy.float), ('PMDEC_ERR', numpy.float), ('PMMATCH',numpy.int32)]) data['PMMATCH']= 0 h=esutil.htm.HTM() m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'], data['RA'],data['DEC'], 2./3600.,maxmatch=1) data['PMRA'][m2]= pmdata['PMRA'][m1] data['PMDEC'][m2]= pmdata['PMDEC'][m1] data['PMRA_ERR'][m2]= pmdata['PMRA_ERR'][m1] data['PMDEC_ERR'][m2]= pmdata['PMDEC_ERR'][m1] data['PMMATCH'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32) pmindx= data['PMMATCH'] == 1 data['PMRA'][True-pmindx]= -9999.99 data['PMDEC'][True-pmindx]= -9999.99 data['PMRA_ERR'][True-pmindx]= -9999.99 data['PMDEC_ERR'][True-pmindx]= -9999.99 #Calculate Galactocentric velocities data= esutil.numpy_util.add_fields(data,[('GALVR', numpy.float), ('GALVT', numpy.float), ('GALVZ', numpy.float)]) lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True) XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True) pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],data['PMDEC'], data['RA'],data['DEC'], degree=True) vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'], pmllpmbb[:,0], pmllpmbb[:,1], lb[:,0],lb[:,1],data['RC_DIST'], degree=True) vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0], vxvyvz[:,1], vxvyvz[:,2], 8.-XYZ[:,0], XYZ[:,1], XYZ[:,2]+0.025, vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc data['GALVR']= vR data['GALVT']= vT data['GALVZ']= vZ data['GALVR'][True-pmindx]= -9999.99 data['GALVT'][True-pmindx]= -9999.99 data['GALVZ'][True-pmindx]= -9999.99 #Get proper motions pmfile= savefilename.split('.')[0]+'_pms_ppmxl.fits' if os.path.exists(pmfile): pmdata= fitsio.read(pmfile,1) else: pmdata= numpy.recarray(len(data), formats=['f8','f8','f8','f8','f8','f8','i4'], names=['RA','DEC','PMRA','PMDEC', 'PMRA_ERR','PMDEC_ERR','PMMATCH']) rad= u.Quantity(4./3600.,u.degree) v= Vizier(columns=['RAJ2000','DEJ2000','pmRA','pmDE','e_pmRA','e_pmDE']) for ii in range(len(data)): #if ii > 100: break sys.stdout.write('\r'+"Getting pm data for point %i / %i" % (ii+1,len(data))) sys.stdout.flush() pmdata.RA[ii]= data['RA'][ii] pmdata.DEC[ii]= data['DEC'][ii] co= coord.ICRS(ra=data['RA'][ii], dec=data['DEC'][ii], unit=(u.degree, u.degree)) trying= True while trying: try: tab= v.query_region(co,rad,catalog='I/317') #PPMXL catalog except astroquery.exceptions.TimeoutError: pass else: trying= False if len(tab) == 0: pmdata.PMMATCH[ii]= 0 print "Didn't find a match for %i ..." % ii continue else: pmdata.PMMATCH[ii]= len(tab) if len(tab[0]['pmRA']) > 1: pass #print "Found more than 1 match for %i ..." % ii try: pmdata.PMRA[ii]= float(tab[0]['pmRA']) except TypeError: #Find nearest cosdists= numpy.zeros(len(tab[0]['pmRA'])) for jj in range(len(tab[0]['pmRA'])): cosdists[jj]= cos_sphere_dist(tab[0]['RAJ2000'][jj], tab[0]['DEJ2000'][jj], data['RA'][ii], data['DEC'][ii]) closest= numpy.argmax(cosdists) pmdata.PMRA[ii]= float(tab[0]['pmRA'][closest]) pmdata.PMDEC[ii]= float(tab[0]['pmDE'][closest]) pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA'][closest]) pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE'][closest]) if numpy.isnan(float(tab[0]['pmRA'][closest])): pmdata.PMMATCH[ii]= 0 else: pmdata.PMDEC[ii]= float(tab[0]['pmDE']) pmdata.PMRA_ERR[ii]= float(tab[0]['e_pmRA']) pmdata.PMDEC_ERR[ii]= float(tab[0]['e_pmDE']) if numpy.isnan(float(tab[0]['pmRA'])): pmdata.PMMATCH[ii]= 0 sys.stdout.write('\r'+_ERASESTR+'\r') sys.stdout.flush() fitsio.write(pmfile,pmdata,clobber=True) #To make sure we're using the same format below pmdata= fitsio.read(pmfile,1) #Match proper motions to ppmxl data= esutil.numpy_util.add_fields(data,[('PMRA_PPMXL', numpy.float), ('PMDEC_PPMXL', numpy.float), ('PMRA_ERR_PPMXL', numpy.float), ('PMDEC_ERR_PPMXL', numpy.float), ('PMMATCH_PPMXL',numpy.int32)]) data['PMMATCH_PPMXL']= 0 h=esutil.htm.HTM() m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'], data['RA'],data['DEC'], 2./3600.,maxmatch=1) data['PMRA_PPMXL'][m2]= pmdata['PMRA'][m1] data['PMDEC_PPMXL'][m2]= pmdata['PMDEC'][m1] data['PMRA_ERR_PPMXL'][m2]= pmdata['PMRA_ERR'][m1] data['PMDEC_ERR_PPMXL'][m2]= pmdata['PMDEC_ERR'][m1] data['PMMATCH_PPMXL'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32) pmindx= data['PMMATCH_PPMXL'] == 1 data['PMRA_PPMXL'][True-pmindx]= -9999.99 data['PMDEC_PPMXL'][True-pmindx]= -9999.99 data['PMRA_ERR_PPMXL'][True-pmindx]= -9999.99 data['PMDEC_ERR_PPMXL'][True-pmindx]= -9999.99 #Calculate Galactocentric velocities data= esutil.numpy_util.add_fields(data,[('GALVR_PPMXL', numpy.float), ('GALVT_PPMXL', numpy.float), ('GALVZ_PPMXL', numpy.float)]) lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True) XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True) pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'], data['PMDEC_PPMXL'], data['RA'],data['DEC'], degree=True) vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'], pmllpmbb[:,0], pmllpmbb[:,1], lb[:,0],lb[:,1],data['RC_DIST'], degree=True) vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0], vxvyvz[:,1], vxvyvz[:,2], 8.-XYZ[:,0], XYZ[:,1], XYZ[:,2]+0.025, vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc data['GALVR_PPMXL']= vR data['GALVT_PPMXL']= vT data['GALVZ_PPMXL']= vZ data['GALVR_PPMXL'][True-pmindx]= -9999.99 data['GALVT_PPMXL'][True-pmindx]= -9999.99 data['GALVZ_PPMXL'][True-pmindx]= -9999.99 #Save fitsio.write(savefilename,data,clobber=True) return None
float(numpy.sum(bloggindx * gloggindx)) * 100. / len(data))) print( "Future contamination w/ good logg (unbiased, errors 0.2) for just RC in logg range %i / % i = %i%%" % (numpy.sum(bloggindx * gloggindx * rcindx), numpy.sum(rcindx), float(numpy.sum(bloggindx * gloggindx * rcindx)) * 100. / numpy.sum(rcindx))) #Select stars to be in the RC from the APOKASC data, then check against #evolutionary state jk = data['J0'] - data['K0'] z = isodist.FEH2Z(data['METALS'], zsolar=0.017) #*(0.638*10.**data['ALPHAFE']+0.372) logg = data[kascLoggTag] + numpy.random.normal( size=len(data)) * 0. #can adjust this to look at errors indx= (jk < 0.8)*(jk >= 0.5)\ *(z <= 0.06)\ *(z <= rcmodel.jkzcut(jk,upper=True))\ *(z >= rcmodel.jkzcut(jk))\ *(logg >= 1.8)\ *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True)) #indx*= ((data['TEFF']-4800.)/1000.+2.75) > logg #*(logg <= 2.8) rckascdata = data[indx] rcseismoState = numpy.char.strip(rckascdata[seismoStateTag]) seismo = True ^ ((rcseismoState == 'UNKNOWN') + (rcseismoState == '-9999')) norcseismo= (rcseismoState == 'RGB') \ + (rcseismoState == 'DWARF/SUBGIANT') print( "%i / %i = %i%% APOKASC non-CLUMP stars out of all RC stars would be included with good logg" % (numpy.sum(norcseismo), numpy.sum(seismo), float(numpy.sum(norcseismo)) / numpy.sum(seismo) * 100.)) #Now, how many of the stars in our RC cut have evol and how many of RGB?
def make_rcsample(parser): options, args = parser.parse_args() savefilename = options.savefilename if savefilename is None: #Create savefilename if not given savefilename = os.path.join( appath._APOGEE_DATA, 'rcsample_' + appath._APOGEE_REDUX + '.fits') print("Saving to %s ..." % savefilename) #Read the base-sample data = apread.allStar(adddist=_ADDHAYDENDIST, rmdups=options.rmdups) #Remove a bunch of fields that we do not want to keep data = esutil.numpy_util.remove_fields(data, [ 'TARGET_ID', 'FILE', 'AK_WISE', 'SFD_EBV', 'SYNTHVHELIO_AVG', 'SYNTHVSCATTER', 'SYNTHVERR', 'SYNTHVERR_MED', 'RV_TEFF', 'RV_LOGG', 'RV_FEH', 'RV_ALPHA', 'RV_CARB', 'RV_CCFWHM', 'RV_AUTOFWHM', 'SYNTHSCATTER', 'STABLERV_CHI2', 'STABLERV_RCHI2', 'STABLERV_CHI2_PROB', 'CHI2_THRESHOLD', 'APSTAR_VERSION', 'ASPCAP_VERSION', 'RESULTS_VERSION', 'WASH_M', 'WASH_M_ERR', 'WASH_T2', 'WASH_T2_ERR', 'DDO51', 'DDO51_ERR', 'IRAC_3_6', 'IRAC_3_6_ERR', 'IRAC_4_5', 'IRAC_4_5_ERR', 'IRAC_5_8', 'IRAC_5_8_ERR', 'IRAC_8_0', 'IRAC_8_0_ERR', 'WISE_4_5', 'WISE_4_5_ERR', 'TARG_4_5', 'TARG_4_5_ERR', 'WASH_DDO51_GIANT_FLAG', 'WASH_DDO51_STAR_FLAG', 'REDUCTION_ID', 'SRC_H', 'PM_SRC' ]) if not appath._APOGEE_REDUX.lower() == 'current' \ and not 'l30' in appath._APOGEE_REDUX \ and int(appath._APOGEE_REDUX[1:]) < 500: data = esutil.numpy_util.remove_fields(data, ['ELEM']) #Select red-clump stars jk = data['J0'] - data['K0'] z = isodist.FEH2Z(data['METALS'], zsolar=0.017) if 'l30' in appath._APOGEE_REDUX: logg = data['LOGG'] elif appath._APOGEE_REDUX.lower() == 'current' \ or int(appath._APOGEE_REDUX[1:]) > 600: from apogee.tools import paramIndx if False: #Use my custom logg calibration that's correct for the RC logg = (1. - 0.042) * data['FPARAM'][:, paramIndx('logg')] - 0.213 lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1. logg[lowloggindx] = data['FPARAM'][lowloggindx, paramIndx('logg')] - 0.255 hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8 logg[hiloggindx] = data['FPARAM'][hiloggindx, paramIndx('logg')] - 0.3726 else: #Use my custom logg calibration that's correct on average logg = (1. + 0.03) * data['FPARAM'][:, paramIndx('logg')] - 0.37 lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1. logg[lowloggindx] = data['FPARAM'][lowloggindx, paramIndx('logg')] - 0.34 hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8 logg[hiloggindx] = data['FPARAM'][hiloggindx, paramIndx('logg')] - 0.256 else: logg = data['LOGG'] indx= (jk < 0.8)*(jk >= 0.5)\ *(z <= 0.06)\ *(z <= rcmodel.jkzcut(jk,upper=True))\ *(z >= rcmodel.jkzcut(jk))\ *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\ *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True)) data = data[indx] #Add more aggressive flag cut data = esutil.numpy_util.add_fields(data, [('ADDL_LOGG_CUT', numpy.int32)]) data['ADDL_LOGG_CUT'] = ( (data['TEFF'] - 4800.) / 1000. + 2.75) > data['LOGG'] if options.loggcut: data = data[data['ADDL_LOGG_CUT'] == 1] print("Making catalog of %i objects ..." % len(data)) #Add distances data = esutil.numpy_util.add_fields(data, [('RC_DIST', float), ('RC_DM', float), ('RC_GALR', float), ('RC_GALPHI', float), ('RC_GALZ', float)]) rcd = rcmodel.rcdist() jk = data['J0'] - data['K0'] z = isodist.FEH2Z(data['METALS'], zsolar=0.017) data['RC_DIST'] = rcd(jk, z, appmag=data['K0']) * options.distfac data['RC_DM'] = 5. * numpy.log10(data['RC_DIST']) + 10. XYZ = bovy_coords.lbd_to_XYZ(data['GLON'], data['GLAT'], data['RC_DIST'], degree=True) R, phi, Z = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], Xsun=8., Zsun=0.025) data['RC_GALR'] = R data['RC_GALPHI'] = phi data['RC_GALZ'] = Z #Save fitsio.write(savefilename, data, clobber=True) # Add Tycho-2 matches if options.tyc2: data = esutil.numpy_util.add_fields(data, [('TYC2MATCH', numpy.int32), ('TYC1', numpy.int32), ('TYC2', numpy.int32), ('TYC3', numpy.int32)]) data['TYC2MATCH'] = 0 data['TYC1'] = -1 data['TYC2'] = -1 data['TYC3'] = -1 # Write positions posfilename = tempfile.mktemp('.csv', dir=os.getcwd()) resultfilename = tempfile.mktemp('.csv', dir=os.getcwd()) with open(posfilename, 'w') as csvfile: wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL) wr.writerow(['RA', 'DEC']) for ii in range(len(data)): wr.writerow([data[ii]['RA'], data[ii]['DEC']]) # Send to CDS for matching result = open(resultfilename, 'w') try: subprocess.check_call([ 'curl', '-X', 'POST', '-F', 'request=xmatch', '-F', 'distMaxArcsec=2', '-F', 'RESPONSEFORMAT=csv', '-F', 'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA', '-F', 'colDec1=DEC', '-F', 'cat2=vizier:Tycho2', 'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync' ], stdout=result) except subprocess.CalledProcessError: os.remove(posfilename) if os.path.exists(resultfilename): result.close() os.remove(resultfilename) result.close() # Directly match on input RA ma = numpy.loadtxt(resultfilename, delimiter=',', skiprows=1, usecols=(1, 2, 7, 8, 9)) iis = numpy.arange(len(data)) mai = [iis[data['RA'] == ma[ii, 0]][0] for ii in range(len(ma))] data['TYC2MATCH'][mai] = 1 data['TYC1'][mai] = ma[:, 2] data['TYC2'][mai] = ma[:, 3] data['TYC3'][mai] = ma[:, 4] os.remove(posfilename) os.remove(resultfilename) if not options.nostat: #Determine statistical sample and add flag apo = apogee.select.apogeeSelect() statIndx = apo.determine_statistical(data) mainIndx = apread.mainIndx(data) data = esutil.numpy_util.add_fields(data, [('STAT', numpy.int32), ('INVSF', float)]) data['STAT'] = 0 data['STAT'][statIndx * mainIndx] = 1 for ii in range(len(data)): if (statIndx * mainIndx)[ii]: data['INVSF'][ii] = 1. / apo(data['LOCATION_ID'][ii], data['H'][ii]) else: data['INVSF'][ii] = -1. if options.nopm: fitsio.write(savefilename, data, clobber=True) return None #Get proper motions, in a somewhat roundabout way pmfile = savefilename.split('.')[0] + '_pms.fits' if os.path.exists(pmfile): pmdata = fitsio.read(pmfile, 1) else: pmdata = numpy.recarray( len(data), formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'], names=[ 'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR', 'PMMATCH' ]) # Write positions, again ... posfilename = tempfile.mktemp('.csv', dir=os.getcwd()) resultfilename = tempfile.mktemp('.csv', dir=os.getcwd()) with open(posfilename, 'w') as csvfile: wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL) wr.writerow(['RA', 'DEC']) for ii in range(len(data)): wr.writerow([data[ii]['RA'], data[ii]['DEC']]) # Send to CDS for matching result = open(resultfilename, 'w') try: subprocess.check_call([ 'curl', '-X', 'POST', '-F', 'request=xmatch', '-F', 'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F', 'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA', '-F', 'colDec1=DEC', '-F', 'cat2=vizier:UCAC4', 'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync' ], stdout=result) except subprocess.CalledProcessError: os.remove(posfilename) if os.path.exists(resultfilename): result.close() os.remove(resultfilename) result.close() # Match back and only keep the closest one ma = numpy.loadtxt(resultfilename, delimiter=',', skiprows=1, converters={ 15: lambda s: float(s.strip() or -9999), 16: lambda s: float(s.strip() or -9999), 17: lambda s: float(s.strip() or -9999), 18: lambda s: float(s.strip() or -9999) }, usecols=(4, 5, 15, 16, 17, 18)) h = esutil.htm.HTM() m1, m2, d12 = h.match(data['RA'], data['DEC'], ma[:, 0], ma[:, 1], 4. / 3600., maxmatch=1) pmdata['PMMATCH'] = 0 pmdata['RA'] = data['RA'] pmdata['DEC'] = data['DEC'] pmdata['PMMATCH'][m1] = 1 pmdata['PMRA'][m1] = ma[m2, 2] pmdata['PMDEC'][m1] = ma[m2, 3] pmdata['PMRA_ERR'][m1] = ma[m2, 4] pmdata['PMDEC_ERR'][m1] = ma[m2, 5] pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \ +(pmdata['PMDEC'] == -9999) \ +(pmdata['PMRA_ERR'] == -9999) \ +(pmdata['PMDEC_ERR'] == -9999)]= 0 fitsio.write(pmfile, pmdata, clobber=True) #To make sure we're using the same format below pmdata = fitsio.read(pmfile, 1) os.remove(posfilename) os.remove(resultfilename) #Match proper motions try: #These already exist currently, but may not always exist data = esutil.numpy_util.remove_fields(data, ['PMRA', 'PMDEC']) except ValueError: pass data = esutil.numpy_util.add_fields(data, [('PMRA', numpy.float), ('PMDEC', numpy.float), ('PMRA_ERR', numpy.float), ('PMDEC_ERR', numpy.float), ('PMMATCH', numpy.int32)]) data['PMMATCH'] = 0 h = esutil.htm.HTM() m1, m2, d12 = h.match(pmdata['RA'], pmdata['DEC'], data['RA'], data['DEC'], 2. / 3600., maxmatch=1) data['PMRA'][m2] = pmdata['PMRA'][m1] data['PMDEC'][m2] = pmdata['PMDEC'][m1] data['PMRA_ERR'][m2] = pmdata['PMRA_ERR'][m1] data['PMDEC_ERR'][m2] = pmdata['PMDEC_ERR'][m1] data['PMMATCH'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32) pmindx = data['PMMATCH'] == 1 data['PMRA'][True - pmindx] = -9999.99 data['PMDEC'][True - pmindx] = -9999.99 data['PMRA_ERR'][True - pmindx] = -9999.99 data['PMDEC_ERR'][True - pmindx] = -9999.99 #Calculate Galactocentric velocities data = esutil.numpy_util.add_fields(data, [('GALVR', numpy.float), ('GALVT', numpy.float), ('GALVZ', numpy.float)]) lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True) XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0], lb[:, 1], data['RC_DIST'], degree=True) pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'], data['PMDEC'], data['RA'], data['DEC'], degree=True) vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'], pmllpmbb[:, 0], pmllpmbb[:, 1], lb[:, 0], lb[:, 1], data['RC_DIST'], degree=True) vR, vT, vZ = bovy_coords.vxvyvz_to_galcencyl( vxvyvz[:, 0], vxvyvz[:, 1], vxvyvz[:, 2], 8. - XYZ[:, 0], XYZ[:, 1], XYZ[:, 2] + 0.025, vsun=[-11.1, 30.24 * 8., 7.25]) #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc data['GALVR'] = vR data['GALVT'] = vT data['GALVZ'] = vZ data['GALVR'][True - pmindx] = -9999.99 data['GALVT'][True - pmindx] = -9999.99 data['GALVZ'][True - pmindx] = -9999.99 #Get PPMXL proper motions, in a somewhat roundabout way pmfile = savefilename.split('.')[0] + '_pms_ppmxl.fits' if os.path.exists(pmfile): pmdata = fitsio.read(pmfile, 1) else: pmdata = numpy.recarray( len(data), formats=['f8', 'f8', 'f8', 'f8', 'f8', 'f8', 'i4'], names=[ 'RA', 'DEC', 'PMRA', 'PMDEC', 'PMRA_ERR', 'PMDEC_ERR', 'PMMATCH' ]) # Write positions, again ... posfilename = tempfile.mktemp('.csv', dir=os.getcwd()) resultfilename = tempfile.mktemp('.csv', dir=os.getcwd()) with open(posfilename, 'w') as csvfile: wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL) wr.writerow(['RA', 'DEC']) for ii in range(len(data)): wr.writerow([data[ii]['RA'], data[ii]['DEC']]) # Send to CDS for matching result = open(resultfilename, 'w') try: subprocess.check_call([ 'curl', '-X', 'POST', '-F', 'request=xmatch', '-F', 'distMaxArcsec=4', '-F', 'RESPONSEFORMAT=csv', '-F', 'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA', '-F', 'colDec1=DEC', '-F', 'cat2=vizier:PPMXL', 'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync' ], stdout=result) except subprocess.CalledProcessError: os.remove(posfilename) if os.path.exists(resultfilename): result.close() os.remove(resultfilename) result.close() # Match back and only keep the closest one ma = numpy.loadtxt(resultfilename, delimiter=',', skiprows=1, converters={ 15: lambda s: float(s.strip() or -9999), 16: lambda s: float(s.strip() or -9999), 17: lambda s: float(s.strip() or -9999), 18: lambda s: float(s.strip() or -9999) }, usecols=(4, 5, 15, 16, 19, 20)) h = esutil.htm.HTM() m1, m2, d12 = h.match(data['RA'], data['DEC'], ma[:, 0], ma[:, 1], 4. / 3600., maxmatch=1) pmdata['PMMATCH'] = 0 pmdata['RA'] = data['RA'] pmdata['DEC'] = data['DEC'] pmdata['PMMATCH'][m1] = 1 pmdata['PMRA'][m1] = ma[m2, 2] pmdata['PMDEC'][m1] = ma[m2, 3] pmdata['PMRA_ERR'][m1] = ma[m2, 4] pmdata['PMDEC_ERR'][m1] = ma[m2, 5] pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \ +(pmdata['PMDEC'] == -9999) \ +(pmdata['PMRA_ERR'] == -9999) \ +(pmdata['PMDEC_ERR'] == -9999)]= 0 fitsio.write(pmfile, pmdata, clobber=True) #To make sure we're using the same format below pmdata = fitsio.read(pmfile, 1) os.remove(posfilename) os.remove(resultfilename) #Match proper motions to ppmxl data = esutil.numpy_util.add_fields(data, [('PMRA_PPMXL', numpy.float), ('PMDEC_PPMXL', numpy.float), ('PMRA_ERR_PPMXL', numpy.float), ('PMDEC_ERR_PPMXL', numpy.float), ('PMMATCH_PPMXL', numpy.int32)]) data['PMMATCH_PPMXL'] = 0 h = esutil.htm.HTM() m1, m2, d12 = h.match(pmdata['RA'], pmdata['DEC'], data['RA'], data['DEC'], 2. / 3600., maxmatch=1) data['PMRA_PPMXL'][m2] = pmdata['PMRA'][m1] data['PMDEC_PPMXL'][m2] = pmdata['PMDEC'][m1] data['PMRA_ERR_PPMXL'][m2] = pmdata['PMRA_ERR'][m1] data['PMDEC_ERR_PPMXL'][m2] = pmdata['PMDEC_ERR'][m1] data['PMMATCH_PPMXL'][m2] = pmdata['PMMATCH'][m1].astype(numpy.int32) pmindx = data['PMMATCH_PPMXL'] == 1 data['PMRA_PPMXL'][True - pmindx] = -9999.99 data['PMDEC_PPMXL'][True - pmindx] = -9999.99 data['PMRA_ERR_PPMXL'][True - pmindx] = -9999.99 data['PMDEC_ERR_PPMXL'][True - pmindx] = -9999.99 #Calculate Galactocentric velocities data = esutil.numpy_util.add_fields(data, [('GALVR_PPMXL', numpy.float), ('GALVT_PPMXL', numpy.float), ('GALVZ_PPMXL', numpy.float)]) lb = bovy_coords.radec_to_lb(data['RA'], data['DEC'], degree=True) XYZ = bovy_coords.lbd_to_XYZ(lb[:, 0], lb[:, 1], data['RC_DIST'], degree=True) pmllpmbb = bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'], data['PMDEC_PPMXL'], data['RA'], data['DEC'], degree=True) vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'], pmllpmbb[:, 0], pmllpmbb[:, 1], lb[:, 0], lb[:, 1], data['RC_DIST'], degree=True) vR, vT, vZ = bovy_coords.vxvyvz_to_galcencyl( vxvyvz[:, 0], vxvyvz[:, 1], vxvyvz[:, 2], 8. - XYZ[:, 0], XYZ[:, 1], XYZ[:, 2] + 0.025, vsun=[-11.1, 30.24 * 8., 7.25]) #Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc data['GALVR_PPMXL'] = vR data['GALVT_PPMXL'] = vT data['GALVZ_PPMXL'] = vZ data['GALVR_PPMXL'][True - pmindx] = -9999.99 data['GALVT_PPMXL'][True - pmindx] = -9999.99 data['GALVZ_PPMXL'][True - pmindx] = -9999.99 #Save fitsio.write(savefilename, data, clobber=True) return None
def make_rcsample(parser): options,args= parser.parse_args() savefilename= options.savefilename if savefilename is None: #Create savefilename if not given savefilename= os.path.join(appath._APOGEE_DATA, 'rcsample_'+appath._APOGEE_REDUX+'.fits') print("Saving to %s ..." % savefilename) #Read the base-sample data= apread.allStar(adddist=_ADDHAYDENDIST,rmdups=options.rmdups) #Remove a bunch of fields that we do not want to keep data= esutil.numpy_util.remove_fields(data, ['TARGET_ID', 'FILE', 'AK_WISE', 'SFD_EBV', 'SYNTHVHELIO_AVG', 'SYNTHVSCATTER', 'SYNTHVERR', 'SYNTHVERR_MED', 'RV_TEFF', 'RV_LOGG', 'RV_FEH', 'RV_ALPHA', 'RV_CARB', 'RV_CCFWHM', 'RV_AUTOFWHM', 'SYNTHSCATTER', 'STABLERV_CHI2', 'STABLERV_RCHI2', 'STABLERV_CHI2_PROB', 'CHI2_THRESHOLD', 'APSTAR_VERSION', 'ASPCAP_VERSION', 'RESULTS_VERSION', 'WASH_M', 'WASH_M_ERR', 'WASH_T2', 'WASH_T2_ERR', 'DDO51', 'DDO51_ERR', 'IRAC_3_6', 'IRAC_3_6_ERR', 'IRAC_4_5', 'IRAC_4_5_ERR', 'IRAC_5_8', 'IRAC_5_8_ERR', 'IRAC_8_0', 'IRAC_8_0_ERR', 'WISE_4_5', 'WISE_4_5_ERR', 'TARG_4_5', 'TARG_4_5_ERR', 'WASH_DDO51_GIANT_FLAG', 'WASH_DDO51_STAR_FLAG', 'REDUCTION_ID', 'SRC_H', 'PM_SRC']) if not appath._APOGEE_REDUX.lower() == 'current' \ and not 'l30' in appath._APOGEE_REDUX \ and int(appath._APOGEE_REDUX[1:]) < 500: data= esutil.numpy_util.remove_fields(data, ['ELEM']) #Select red-clump stars jk= data['J0']-data['K0'] z= isodist.FEH2Z(data['METALS'],zsolar=0.017) if 'l30' in appath._APOGEE_REDUX: logg= data['LOGG'] elif appath._APOGEE_REDUX.lower() == 'current' \ or int(appath._APOGEE_REDUX[1:]) > 600: from apogee.tools import paramIndx if False: #Use my custom logg calibration that's correct for the RC logg= (1.-0.042)*data['FPARAM'][:,paramIndx('logg')]-0.213 lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1. logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.255 hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8 logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.3726 else: #Use my custom logg calibration that's correct on average logg= (1.+0.03)*data['FPARAM'][:,paramIndx('logg')]-0.37 lowloggindx= data['FPARAM'][:,paramIndx('logg')] < 1. logg[lowloggindx]= data['FPARAM'][lowloggindx,paramIndx('logg')]-0.34 hiloggindx= data['FPARAM'][:,paramIndx('logg')] > 3.8 logg[hiloggindx]= data['FPARAM'][hiloggindx,paramIndx('logg')]-0.256 else: logg= data['LOGG'] indx= (jk < 0.8)*(jk >= 0.5)\ *(z <= 0.06)\ *(z <= rcmodel.jkzcut(jk,upper=True))\ *(z >= rcmodel.jkzcut(jk))\ *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\ *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True)) data= data[indx] #Add more aggressive flag cut data= esutil.numpy_util.add_fields(data,[('ADDL_LOGG_CUT',numpy.int32)]) data['ADDL_LOGG_CUT']= ((data['TEFF']-4800.)/1000.+2.75) > data['LOGG'] if options.loggcut: data= data[data['ADDL_LOGG_CUT'] == 1] print("Making catalog of %i objects ..." % len(data)) #Add distances data= esutil.numpy_util.add_fields(data,[('RC_DIST', float), ('RC_DM', float), ('RC_GALR', float), ('RC_GALPHI', float), ('RC_GALZ', float)]) rcd= rcmodel.rcdist() jk= data['J0']-data['K0'] z= isodist.FEH2Z(data['METALS'],zsolar=0.017) data['RC_DIST']= rcd(jk,z,appmag=data['K0'])*options.distfac data['RC_DM']= 5.*numpy.log10(data['RC_DIST'])+10. XYZ= bovy_coords.lbd_to_XYZ(data['GLON'], data['GLAT'], data['RC_DIST'], degree=True) R,phi,Z= bovy_coords.XYZ_to_galcencyl(XYZ[:,0], XYZ[:,1], XYZ[:,2], Xsun=8.,Zsun=0.025) data['RC_GALR']= R data['RC_GALPHI']= phi data['RC_GALZ']= Z #Save fitsio.write(savefilename,data,clobber=True) # Add Tycho-2 matches if options.tyc2: data= esutil.numpy_util.add_fields(data,[('TYC2MATCH',numpy.int32), ('TYC1',numpy.int32), ('TYC2',numpy.int32), ('TYC3',numpy.int32)]) data['TYC2MATCH']= 0 data['TYC1']= -1 data['TYC2']= -1 data['TYC3']= -1 # Write positions posfilename= tempfile.mktemp('.csv',dir=os.getcwd()) resultfilename= tempfile.mktemp('.csv',dir=os.getcwd()) with open(posfilename,'w') as csvfile: wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL) wr.writerow(['RA','DEC']) for ii in range(len(data)): wr.writerow([data[ii]['RA'],data[ii]['DEC']]) # Send to CDS for matching result= open(resultfilename,'w') try: subprocess.check_call(['curl', '-X','POST', '-F','request=xmatch', '-F','distMaxArcsec=2', '-F','RESPONSEFORMAT=csv', '-F','cat1=@%s' % os.path.basename(posfilename), '-F','colRA1=RA', '-F','colDec1=DEC', '-F','cat2=vizier:Tycho2', 'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'], stdout=result) except subprocess.CalledProcessError: os.remove(posfilename) if os.path.exists(resultfilename): result.close() os.remove(resultfilename) result.close() # Directly match on input RA ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1, usecols=(1,2,7,8,9)) iis= numpy.arange(len(data)) mai= [iis[data['RA'] == ma[ii,0]][0] for ii in range(len(ma))] data['TYC2MATCH'][mai]= 1 data['TYC1'][mai]= ma[:,2] data['TYC2'][mai]= ma[:,3] data['TYC3'][mai]= ma[:,4] os.remove(posfilename) os.remove(resultfilename) if not options.nostat: #Determine statistical sample and add flag apo= apogee.select.apogeeSelect() statIndx= apo.determine_statistical(data) mainIndx= apread.mainIndx(data) data= esutil.numpy_util.add_fields(data,[('STAT',numpy.int32), ('INVSF',float)]) data['STAT']= 0 data['STAT'][statIndx*mainIndx]= 1 for ii in range(len(data)): if (statIndx*mainIndx)[ii]: data['INVSF'][ii]= 1./apo(data['LOCATION_ID'][ii], data['H'][ii]) else: data['INVSF'][ii]= -1. if options.nopm: fitsio.write(savefilename,data,clobber=True) return None #Get proper motions, in a somewhat roundabout way pmfile= savefilename.split('.')[0]+'_pms.fits' if os.path.exists(pmfile): pmdata= fitsio.read(pmfile,1) else: pmdata= numpy.recarray(len(data), formats=['f8','f8','f8','f8','f8','f8','i4'], names=['RA','DEC','PMRA','PMDEC', 'PMRA_ERR','PMDEC_ERR','PMMATCH']) # Write positions, again ... posfilename= tempfile.mktemp('.csv',dir=os.getcwd()) resultfilename= tempfile.mktemp('.csv',dir=os.getcwd()) with open(posfilename,'w') as csvfile: wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL) wr.writerow(['RA','DEC']) for ii in range(len(data)): wr.writerow([data[ii]['RA'],data[ii]['DEC']]) # Send to CDS for matching result= open(resultfilename,'w') try: subprocess.check_call(['curl', '-X','POST', '-F','request=xmatch', '-F','distMaxArcsec=4', '-F','RESPONSEFORMAT=csv', '-F','cat1=@%s' % os.path.basename(posfilename), '-F','colRA1=RA', '-F','colDec1=DEC', '-F','cat2=vizier:UCAC4', 'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'], stdout=result) except subprocess.CalledProcessError: os.remove(posfilename) if os.path.exists(resultfilename): result.close() os.remove(resultfilename) result.close() # Match back and only keep the closest one ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1, converters={15: lambda s: float(s.strip() or -9999), 16: lambda s: float(s.strip() or -9999), 17: lambda s: float(s.strip() or -9999), 18: lambda s: float(s.strip() or -9999)}, usecols=(4,5,15,16,17,18)) h=esutil.htm.HTM() m1,m2,d12 = h.match(data['RA'],data['DEC'], ma[:,0],ma[:,1],4./3600.,maxmatch=1) pmdata['PMMATCH']= 0 pmdata['RA']= data['RA'] pmdata['DEC']= data['DEC'] pmdata['PMMATCH'][m1]= 1 pmdata['PMRA'][m1]= ma[m2,2] pmdata['PMDEC'][m1]= ma[m2,3] pmdata['PMRA_ERR'][m1]= ma[m2,4] pmdata['PMDEC_ERR'][m1]= ma[m2,5] pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \ +(pmdata['PMDEC'] == -9999) \ +(pmdata['PMRA_ERR'] == -9999) \ +(pmdata['PMDEC_ERR'] == -9999)]= 0 fitsio.write(pmfile,pmdata,clobber=True) #To make sure we're using the same format below pmdata= fitsio.read(pmfile,1) os.remove(posfilename) os.remove(resultfilename) #Match proper motions try: #These already exist currently, but may not always exist data= esutil.numpy_util.remove_fields(data,['PMRA','PMDEC']) except ValueError: pass data= esutil.numpy_util.add_fields(data,[('PMRA', numpy.float), ('PMDEC', numpy.float), ('PMRA_ERR', numpy.float), ('PMDEC_ERR', numpy.float), ('PMMATCH',numpy.int32)]) data['PMMATCH']= 0 h=esutil.htm.HTM() m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'], data['RA'],data['DEC'], 2./3600.,maxmatch=1) data['PMRA'][m2]= pmdata['PMRA'][m1] data['PMDEC'][m2]= pmdata['PMDEC'][m1] data['PMRA_ERR'][m2]= pmdata['PMRA_ERR'][m1] data['PMDEC_ERR'][m2]= pmdata['PMDEC_ERR'][m1] data['PMMATCH'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32) pmindx= data['PMMATCH'] == 1 data['PMRA'][True-pmindx]= -9999.99 data['PMDEC'][True-pmindx]= -9999.99 data['PMRA_ERR'][True-pmindx]= -9999.99 data['PMDEC_ERR'][True-pmindx]= -9999.99 #Calculate Galactocentric velocities data= esutil.numpy_util.add_fields(data,[('GALVR', numpy.float), ('GALVT', numpy.float), ('GALVZ', numpy.float)]) lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True) XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True) pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA'],data['PMDEC'], data['RA'],data['DEC'], degree=True) vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'], pmllpmbb[:,0], pmllpmbb[:,1], lb[:,0],lb[:,1],data['RC_DIST'], degree=True) vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0], vxvyvz[:,1], vxvyvz[:,2], 8.-XYZ[:,0], XYZ[:,1], XYZ[:,2]+0.025, vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc data['GALVR']= vR data['GALVT']= vT data['GALVZ']= vZ data['GALVR'][True-pmindx]= -9999.99 data['GALVT'][True-pmindx]= -9999.99 data['GALVZ'][True-pmindx]= -9999.99 #Get PPMXL proper motions, in a somewhat roundabout way pmfile= savefilename.split('.')[0]+'_pms_ppmxl.fits' if os.path.exists(pmfile): pmdata= fitsio.read(pmfile,1) else: pmdata= numpy.recarray(len(data), formats=['f8','f8','f8','f8','f8','f8','i4'], names=['RA','DEC','PMRA','PMDEC', 'PMRA_ERR','PMDEC_ERR','PMMATCH']) # Write positions, again ... posfilename= tempfile.mktemp('.csv',dir=os.getcwd()) resultfilename= tempfile.mktemp('.csv',dir=os.getcwd()) with open(posfilename,'w') as csvfile: wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL) wr.writerow(['RA','DEC']) for ii in range(len(data)): wr.writerow([data[ii]['RA'],data[ii]['DEC']]) # Send to CDS for matching result= open(resultfilename,'w') try: subprocess.check_call(['curl', '-X','POST', '-F','request=xmatch', '-F','distMaxArcsec=4', '-F','RESPONSEFORMAT=csv', '-F','cat1=@%s' % os.path.basename(posfilename), '-F','colRA1=RA', '-F','colDec1=DEC', '-F','cat2=vizier:PPMXL', 'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'], stdout=result) except subprocess.CalledProcessError: os.remove(posfilename) if os.path.exists(resultfilename): result.close() os.remove(resultfilename) result.close() # Match back and only keep the closest one ma= numpy.loadtxt(resultfilename,delimiter=',',skiprows=1, converters={15: lambda s: float(s.strip() or -9999), 16: lambda s: float(s.strip() or -9999), 17: lambda s: float(s.strip() or -9999), 18: lambda s: float(s.strip() or -9999)}, usecols=(4,5,15,16,19,20)) h=esutil.htm.HTM() m1,m2,d12 = h.match(data['RA'],data['DEC'], ma[:,0],ma[:,1],4./3600.,maxmatch=1) pmdata['PMMATCH']= 0 pmdata['RA']= data['RA'] pmdata['DEC']= data['DEC'] pmdata['PMMATCH'][m1]= 1 pmdata['PMRA'][m1]= ma[m2,2] pmdata['PMDEC'][m1]= ma[m2,3] pmdata['PMRA_ERR'][m1]= ma[m2,4] pmdata['PMDEC_ERR'][m1]= ma[m2,5] pmdata['PMMATCH'][(pmdata['PMRA'] == -9999) \ +(pmdata['PMDEC'] == -9999) \ +(pmdata['PMRA_ERR'] == -9999) \ +(pmdata['PMDEC_ERR'] == -9999)]= 0 fitsio.write(pmfile,pmdata,clobber=True) #To make sure we're using the same format below pmdata= fitsio.read(pmfile,1) os.remove(posfilename) os.remove(resultfilename) #Match proper motions to ppmxl data= esutil.numpy_util.add_fields(data,[('PMRA_PPMXL', numpy.float), ('PMDEC_PPMXL', numpy.float), ('PMRA_ERR_PPMXL', numpy.float), ('PMDEC_ERR_PPMXL', numpy.float), ('PMMATCH_PPMXL',numpy.int32)]) data['PMMATCH_PPMXL']= 0 h=esutil.htm.HTM() m1,m2,d12 = h.match(pmdata['RA'],pmdata['DEC'], data['RA'],data['DEC'], 2./3600.,maxmatch=1) data['PMRA_PPMXL'][m2]= pmdata['PMRA'][m1] data['PMDEC_PPMXL'][m2]= pmdata['PMDEC'][m1] data['PMRA_ERR_PPMXL'][m2]= pmdata['PMRA_ERR'][m1] data['PMDEC_ERR_PPMXL'][m2]= pmdata['PMDEC_ERR'][m1] data['PMMATCH_PPMXL'][m2]= pmdata['PMMATCH'][m1].astype(numpy.int32) pmindx= data['PMMATCH_PPMXL'] == 1 data['PMRA_PPMXL'][True-pmindx]= -9999.99 data['PMDEC_PPMXL'][True-pmindx]= -9999.99 data['PMRA_ERR_PPMXL'][True-pmindx]= -9999.99 data['PMDEC_ERR_PPMXL'][True-pmindx]= -9999.99 #Calculate Galactocentric velocities data= esutil.numpy_util.add_fields(data,[('GALVR_PPMXL', numpy.float), ('GALVT_PPMXL', numpy.float), ('GALVZ_PPMXL', numpy.float)]) lb= bovy_coords.radec_to_lb(data['RA'],data['DEC'],degree=True) XYZ= bovy_coords.lbd_to_XYZ(lb[:,0],lb[:,1],data['RC_DIST'],degree=True) pmllpmbb= bovy_coords.pmrapmdec_to_pmllpmbb(data['PMRA_PPMXL'], data['PMDEC_PPMXL'], data['RA'],data['DEC'], degree=True) vxvyvz= bovy_coords.vrpmllpmbb_to_vxvyvz(data['VHELIO_AVG'], pmllpmbb[:,0], pmllpmbb[:,1], lb[:,0],lb[:,1],data['RC_DIST'], degree=True) vR, vT, vZ= bovy_coords.vxvyvz_to_galcencyl(vxvyvz[:,0], vxvyvz[:,1], vxvyvz[:,2], 8.-XYZ[:,0], XYZ[:,1], XYZ[:,2]+0.025, vsun=[-11.1,30.24*8.,7.25])#Assumes proper motion of Sgr A* and R0=8 kpc, zo= 25 pc data['GALVR_PPMXL']= vR data['GALVT_PPMXL']= vT data['GALVZ_PPMXL']= vZ data['GALVR_PPMXL'][True-pmindx]= -9999.99 data['GALVT_PPMXL'][True-pmindx]= -9999.99 data['GALVZ_PPMXL'][True-pmindx]= -9999.99 #Save fitsio.write(savefilename,data,clobber=True) return None
upper=True)) print "Current contamination in logg range %i / % i = %i%%" % (numpy.sum(bloggindx*gloggindx),len(data),float(numpy.sum(bloggindx*gloggindx))*100./len(data)) nlogg= data[kascLoggTag]+numpy.random.normal(size=len(data))*0.2 bloggindx= (nlogg >= 1.8)*(nlogg <= rcmodel.loggteffcut(data['TEFF'], data['METALS'], upper=True)) print "Future contamination w/ good logg (unbiased, errors 0.2) in logg range %i / % i = %i%%" % (numpy.sum(bloggindx*gloggindx),len(data),float(numpy.sum(bloggindx*gloggindx))*100./len(data)) print "Future contamination w/ good logg (unbiased, errors 0.2) for just RC in logg range %i / % i = %i%%" % (numpy.sum(bloggindx*gloggindx*rcindx),numpy.sum(rcindx),float(numpy.sum(bloggindx*gloggindx*rcindx))*100./numpy.sum(rcindx)) #Select stars to be in the RC from the APOKASC data, then check against #evolutionary state jk= data['J0']-data['K0'] z= isodist.FEH2Z(data['METALS'],zsolar=0.017)#*(0.638*10.**data['ALPHAFE']+0.372) logg= data[kascLoggTag]+numpy.random.normal(size=len(data))*0. #can adjust this to look at errors indx= (jk < 0.8)*(jk >= 0.5)\ *(z <= 0.06)\ *(z <= rcmodel.jkzcut(jk,upper=True))\ *(z >= rcmodel.jkzcut(jk))\ *(logg >= 1.8)\ *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True)) #indx*= ((data['TEFF']-4800.)/1000.+2.75) > logg #*(logg <= 2.8) rckascdata= data[indx] rcseismoState= numpy.char.strip(rckascdata[seismoStateTag]) seismo= True-((rcseismoState == 'UNKNOWN')+(rcseismoState == '-9999')) norcseismo= (rcseismoState == 'RGB') \ + (rcseismoState == 'DWARF/SUBGIANT') print "%i / %i = %i%% APOKASC non-CLUMP stars out of all RC stars would be included with good logg" % (numpy.sum(norcseismo),numpy.sum(seismo),float(numpy.sum(norcseismo))/numpy.sum(seismo)*100.) #Now, how many of the stars in our RC cut have evol and how many of RGB? indx= (jk < 0.8)*(jk >= 0.5)\ *(logg >= 1.8)\ *(logg <= rcmodel.loggteffcut(data['TEFF'],z,upper=True))
def make_rcsample(parser): options, args = parser.parse_args() savefilename = options.savefilename if savefilename is None: #Create savefilename if not given savefilename = os.path.join( appath._APOGEE_DATA, 'rcsample_' + appath._APOGEE_REDUX + '.fits') print("Saving to %s ..." % savefilename) #Read the base-sample data = apread.allStar(adddist=_ADDHAYDENDIST, rmdups=options.rmdups) #Remove a bunch of fields that we do not want to keep data = esutil.numpy_util.remove_fields(data, [ 'TARGET_ID', 'FILE', 'AK_WISE', 'SFD_EBV', 'SYNTHVHELIO_AVG', 'SYNTHVSCATTER', 'SYNTHVERR', 'SYNTHVERR_MED', 'RV_TEFF', 'RV_LOGG', 'RV_FEH', 'RV_ALPHA', 'RV_CARB', 'RV_CCFWHM', 'RV_AUTOFWHM', 'SYNTHSCATTER', 'STABLERV_CHI2', 'STABLERV_RCHI2', 'STABLERV_CHI2_PROB', 'CHI2_THRESHOLD', 'APSTAR_VERSION', 'ASPCAP_VERSION', 'RESULTS_VERSION', 'WASH_M', 'WASH_M_ERR', 'WASH_T2', 'WASH_T2_ERR', 'DDO51', 'DDO51_ERR', 'IRAC_3_6', 'IRAC_3_6_ERR', 'IRAC_4_5', 'IRAC_4_5_ERR', 'IRAC_5_8', 'IRAC_5_8_ERR', 'IRAC_8_0', 'IRAC_8_0_ERR', 'WISE_4_5', 'WISE_4_5_ERR', 'TARG_4_5', 'TARG_4_5_ERR', 'WASH_DDO51_GIANT_FLAG', 'WASH_DDO51_STAR_FLAG', 'REDUCTION_ID', 'SRC_H', 'PM_SRC' ]) # More if appath._APOGEE_REDUX.lower() == 'l33': data = esutil.numpy_util.remove_fields(data, [ 'GAIA_SOURCE_ID', 'GAIA_PARALLAX', 'GAIA_PARALLAX_ERROR', 'GAIA_PMRA', 'GAIA_PMRA_ERROR', 'GAIA_PMDEC', 'GAIA_PMDEC_ERROR', 'GAIA_PHOT_G_MEAN_MAG', 'GAIA_PHOT_BP_MEAN_MAG', 'GAIA_PHOT_RP_MEAN_MAG', 'GAIA_RADIAL_VELOCITY', 'GAIA_RADIAL_VELOCITY_ERROR', 'GAIA_R_EST', 'GAIA_R_LO', 'GAIA_R_HI', 'TEFF_SPEC', 'LOGG_SPEC' ]) if not appath._APOGEE_REDUX.lower() == 'current' \ and not 'l3' in appath._APOGEE_REDUX \ and int(appath._APOGEE_REDUX[1:]) < 500: data = esutil.numpy_util.remove_fields(data, ['ELEM']) #Select red-clump stars jk = data['J0'] - data['K0'] z = isodist.FEH2Z(data['METALS'], zsolar=0.017) if 'l31' in appath._APOGEE_REDUX: logg = data['LOGG'] elif 'l30' in appath._APOGEE_REDUX: logg = data['LOGG'] elif appath._APOGEE_REDUX.lower() == 'current' \ or int(appath._APOGEE_REDUX[1:]) > 600: if False: #Use my custom logg calibration that's correct for the RC logg = (1. - 0.042) * data['FPARAM'][:, paramIndx('logg')] - 0.213 lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1. logg[lowloggindx] = data['FPARAM'][lowloggindx, paramIndx('logg')] - 0.255 hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8 logg[hiloggindx] = data['FPARAM'][hiloggindx, paramIndx('logg')] - 0.3726 else: #Use my custom logg calibration that's correct on average logg = (1. + 0.03) * data['FPARAM'][:, paramIndx('logg')] - 0.37 lowloggindx = data['FPARAM'][:, paramIndx('logg')] < 1. logg[lowloggindx] = data['FPARAM'][lowloggindx, paramIndx('logg')] - 0.34 hiloggindx = data['FPARAM'][:, paramIndx('logg')] > 3.8 logg[hiloggindx] = data['FPARAM'][hiloggindx, paramIndx('logg')] - 0.256 else: logg = data['LOGG'] indx= (jk < 0.8)*(jk >= 0.5)\ *(z <= 0.06)\ *(z <= rcmodel.jkzcut(jk,upper=True))\ *(z >= rcmodel.jkzcut(jk))\ *(logg >= rcmodel.loggteffcut(data['TEFF'],z,upper=False))\ *(logg+0.1*('l31' in appath._APOGEE_REDUX or 'l33' in appath._APOGEE_REDUX) \ <= rcmodel.loggteffcut(data['TEFF'],z,upper=True)) data = data[indx] #Add more aggressive flag cut data = esutil.numpy_util.add_fields(data, [('ADDL_LOGG_CUT', numpy.int32)]) data['ADDL_LOGG_CUT'] = ( (data['TEFF'] - 4800.) / 1000. + 2.75) > data['LOGG'] if options.loggcut: data = data[data['ADDL_LOGG_CUT'] == 1] print("Making catalog of %i objects ..." % len(data)) #Add distances data = esutil.numpy_util.add_fields(data, [('RC_DIST', float), ('RC_DM', float), ('RC_GALR', float), ('RC_GALPHI', float), ('RC_GALZ', float)]) rcd = rcmodel.rcdist() jk = data['J0'] - data['K0'] z = isodist.FEH2Z(data['METALS'], zsolar=0.017) data['RC_DIST'] = rcd(jk, z, appmag=data['K0']) * options.distfac data['RC_DM'] = 5. * numpy.log10(data['RC_DIST']) + 10. XYZ = bovy_coords.lbd_to_XYZ(data['GLON'], data['GLAT'], data['RC_DIST'], degree=True) RphiZ = bovy_coords.XYZ_to_galcencyl(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], Xsun=8.15, Zsun=0.0208) R = RphiZ[:, 0] phi = RphiZ[:, 1] Z = RphiZ[:, 2] data['RC_GALR'] = R data['RC_GALPHI'] = phi data['RC_GALZ'] = Z #Save fitswrite(savefilename, data, clobber=True) # Add Tycho-2 matches if options.tyc2: data = esutil.numpy_util.add_fields(data, [('TYC2MATCH', numpy.int32), ('TYC1', numpy.int32), ('TYC2', numpy.int32), ('TYC3', numpy.int32)]) data['TYC2MATCH'] = 0 data['TYC1'] = -1 data['TYC2'] = -1 data['TYC3'] = -1 # Write positions posfilename = tempfile.mktemp('.csv', dir=os.getcwd()) resultfilename = tempfile.mktemp('.csv', dir=os.getcwd()) with open(posfilename, 'w') as csvfile: wr = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL) wr.writerow(['RA', 'DEC']) for ii in range(len(data)): wr.writerow([data[ii]['RA'], data[ii]['DEC']]) # Send to CDS for matching result = open(resultfilename, 'w') try: subprocess.check_call([ 'curl', '-X', 'POST', '-F', 'request=xmatch', '-F', 'distMaxArcsec=2', '-F', 'RESPONSEFORMAT=csv', '-F', 'cat1=@%s' % os.path.basename(posfilename), '-F', 'colRA1=RA', '-F', 'colDec1=DEC', '-F', 'cat2=vizier:Tycho2', 'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync' ], stdout=result) except subprocess.CalledProcessError: os.remove(posfilename) if os.path.exists(resultfilename): result.close() os.remove(resultfilename) result.close() # Directly match on input RA ma = numpy.loadtxt(resultfilename, delimiter=',', skiprows=1, usecols=(1, 2, 7, 8, 9)) iis = numpy.arange(len(data)) mai = [iis[data['RA'] == ma[ii, 0]][0] for ii in range(len(ma))] data['TYC2MATCH'][mai] = 1 data['TYC1'][mai] = ma[:, 2] data['TYC2'][mai] = ma[:, 3] data['TYC3'][mai] = ma[:, 4] os.remove(posfilename) os.remove(resultfilename) if not options.nostat: #Determine statistical sample and add flag apo = apogee.select.apogeeSelect() statIndx = apo.determine_statistical(data) mainIndx = apread.mainIndx(data) data = esutil.numpy_util.add_fields(data, [('STAT', numpy.int32), ('INVSF', float)]) data['STAT'] = 0 data['STAT'][statIndx * mainIndx] = 1 for ii in range(len(data)): if (statIndx * mainIndx)[ii]: data['INVSF'][ii] = 1. / apo(data['LOCATION_ID'][ii], data['H'][ii]) else: data['INVSF'][ii] = -1. if options.nopm: fitswrite(savefilename, data, clobber=True) return None data = _add_proper_motions(data, savefilename) # Save fitswrite(savefilename, data, clobber=True) return None