Пример #1
0
def import_export():
    path = approot.get_dataset('Data.csv')

    data = pd.read_csv(path)
    print(data)

    path = approot.get_dataset('Data.pickle')
    data.to_pickle(path)
Пример #2
0
def relative_blocks(blockname):
    relative_block_name = list()
    relativeBlockFile = approot.get_dataset("relativeBlockName.json")
    file = open(relativeBlockFile, 'r', encoding='utf-8')
    jsonObject = json.load(file)
    if blockname in jsonObject.keys():
        for key in jsonObject[blockname]:
            relative_block_name.append(key)
    return relative_block_name
Пример #3
0
def readCSV2(filename):
    data = pd.read_csv(filename)
    dataGroup = data.groupby("name")
    result = dict()
    tempdict = dict()
    for name, groupstack in dataGroup:
        tempdict.clear()
        temp = groupstack.sort_values(by="count", ascending=False)
        for index, row in temp.iterrows():
            tempdict[row["blockname"]] = row["count"]
            result[name] = tempdict.copy()

    filename = approot.get_dataset("relativeBlockName.json")
    file = open(filename, 'w', encoding='utf-8')
    json.dump(result, file, ensure_ascii=False)
Пример #4
0
def readCSV(filename):
    pd.set_option('display.max_rows', None)
    pd.set_option('display.max_columns', None)
    pd.set_option('display.width', 300)
    data = pd.read_csv(filename)
    data.columns = ['id', 'name', 'parent_json', 'children_json']
    blockname = pd.DataFrame(columns=['name', 'blockname', 'count'])
    for index, row in data.iterrows():
        objects = json.loads(row['children_json'])
        print((row['id'], row['name']))
        for object in objects:
            blockname = blockname.append(
                pd.DataFrame({"name": row['name'], "blockname": object['name'], "count": object['count']}, index=["0"]),
                ignore_index=True)
    print(blockname)
    blockFile = approot.get_dataset("blocknames.csv")
    blockname.to_csv(blockFile)
Пример #5
0
def save_model():
    clf = SVC()
    iris = datasets.load_iris()
    X, y = iris.data, iris.target
    clf.fit(X, y)
    # method pickle 存放数据
    # pickle_file = approot.get_root('clf.pickle')

    # with open(pickle_file, 'wb') as f:
    #     pickle.dump(clf, f)

    # with open(pickle_file, 'rb') as f:
    #     clf2 = pickle.load(f)
    #     print(clf2.predict(X[0:1]))

    # method 2:joblib
    pickle_file = approot.get_dataset('joblib.pickle')
    # joblib.dump(clf,pickle_file)

    clf3 = joblib.load(pickle_file)
    print(clf3.predict(X[0:1]))
Пример #6
0
                pd.DataFrame({"name": row['name'], "blockname": object['name'], "count": object['count']}, index=["0"]),
                ignore_index=True)
    print(blockname)
    blockFile = approot.get_dataset("blocknames.csv")
    blockname.to_csv(blockFile)


# 读取文档排序后保存
def readCSV2(filename):
    data = pd.read_csv(filename)
    dataGroup = data.groupby("name")
    result = dict()
    tempdict = dict()
    for name, groupstack in dataGroup:
        tempdict.clear()
        temp = groupstack.sort_values(by="count", ascending=False)
        for index, row in temp.iterrows():
            tempdict[row["blockname"]] = row["count"]
            result[name] = tempdict.copy()

    filename = approot.get_dataset("relativeBlockName.json")
    file = open(filename, 'w', encoding='utf-8')
    json.dump(result, file, ensure_ascii=False)


if __name__ == '__main__':
    # filename = approot.get_dataset("SELECT_t___FROM_demo_crawlWeight2_t.csv")
    # readCSV(filename)
    filename = approot.get_dataset("blocknames.csv")
    readCSV2(filename)
Пример #7
0
    for key, value in relations.items():
        if value == deviceId:
            flag = key
            break
    return flag


def test3():
    font = fm.FontProperties(fname='HYQiHei-25J.ttf')

    name_list = ['星期一', '星期二', '星期三', '星期四']
    num_list = [1.5, 0.6, 7.8, 6]
    plt.bar(range(len(num_list)), num_list, color='rgb', tick_label=name_list)
    plt.xticks(fontproperties=font)
    plt.show()


if __name__ == '__main__':
    # select_DEVICE_ID_CONTEXT_ID_from_DWB_DA_8_27.csv  设备id 864621038192553 的行为记录

    file = approot.get_dataset(
        'select_DEVICE_ID_CONTEXT_ID__from_DWB_DA_2018-9-4.csv')
    readCsv(file=file)
    # wordCloudDemo(' '.join(searchKey.values))
    # contentIds = getContentNum(contentId)
    # df = searchUrl(contentIds)
    # drawPicture(df)
    # test2()
    # test()
    # test3()
Пример #8
0
def startup(phone):
    filename = approot.get_dataset(
        "select_DEVICE_ID_CONTEXT_ID__from_DWB_DA.csv")
    deivceId = relation(phone)
    data = read_history2(filename, str(deivceId))
Пример #9
0
from app import approot
import pandas as pd
import numpy as np
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler


def print_parameter(X, Y):
    print(X)
    print(Y)


if __name__ == '__main__':
    path = approot.get_dataset('Data.csv')
    dataset = pd.read_csv(path)
    X = dataset.iloc[:, :-1].values
    Y = dataset.iloc[:, 3].values

    print_parameter(X, Y)
    imputer = Imputer(missing_values="NaN", strategy="mean", axis=0)
    imputer = imputer.fit(X[:, 1:3])
    X[:, 1:3] = imputer.transform(X[:, 1:3])

    print_parameter(X, Y)
    labelencoder_X = LabelEncoder()
    X[:, 0] = labelencoder_X.fit_transform(X[:, 0])

    print_parameter(X, Y)