Пример #1
0
def test_dataset() -> None:
    labels = cache("labels", load_labels)("/store/dataset/labels.csv")
    annotations = cache("train_annotations",
                        get_annotations)("/store/dataset/train.csv", labels)

    d = Dataset(annotations)
    assert len(d) == 142119
Пример #2
0
def test_dataset() -> None:
    raw_audios = load_audios(RAW_TGT_DIR)
    dataset = Dataset(raw_audios, (128, 128))
    for i in range(4):
        x, y = dataset[0]
        plot_spectrograms([np.log(i) for i in [x, y]],
                          f"/store/plot/test-{i}.png")
Пример #3
0
def test_dataset(window_size: int, expected: int) -> None:
    cache = Cache("/store/tmp")
    df = cache("load-train", load)("/store/data/train.csv")
    d = Dataset(
        df[:20],
        window_size=window_size,
        stride=5,
    )
    assert len(d) == expected
    x, y = d[0]
    assert x.shape == (1, window_size)
    assert y.shape == (window_size, )
Пример #4
0
def test_dataset_total_size() -> None:
    cache = Cache("/store/tmp")
    df = cache("load-train", load)("/store/data/train.csv")[:20]
    d = Dataset(
        df,
        window_size=5,
        stride=5,
    )
    total_size = 0
    for i in range(len(d)):
        t, _ = d[i]
        total_size += t.shape[1]
    assert total_size == 20
Пример #5
0
def test_transform(id: str, mode: Mode) -> None:
    annotations = [Annotation(id, [])]

    dataset = Dataset(annotations, mode=mode, resolution=320)
    save_image(
        make_grid(
            [dataset[0][0] for i in range(24)],
            nrow=8,
            padding=2,
            normalize=False,
            range=None,
            scale_each=False,
            pad_value=0,
        ),
        f"/store/tmp/test_aug_{id}-{mode}.png",
    )
Пример #6
0
def test_generation():
    dataset = Dataset()
    loader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=2,
                                         collate_fn=lambda batch: batch)
    b0 = None
    b1 = None
    for i, batch in enumerate(loader):
        if i == 0:
            b0 = batch
        else:
            b1 = batch
            break

    assert b0 != b1

    for i, batch in enumerate(loader):
        example = batch[0]
        ast.parse(example.supervisions["ground_truth"])
        if i == 10000:
            break
Пример #7
0
from app.dataset import Dataset
from app.output import Output
from app.segmenter import Segmenter
from app.utils import Utils
from app.debug import Debug
import numpy as np
import cv2

dataset = Dataset()
dataset.load()

segmenter = Segmenter()

Output.clear()
for item in dataset.items:
    print(item.file)

    #if item.file != "008.jpg":
    #    continue

    #
    # run the segmentation algorithm
    #

    quad = segmenter.segment(item.img, item.distribution_rect)

    #
    # draw the result
    #

    # reference image