Пример #1
0
def upload_files():
    files = request.files
    title = request.args.get('title')
    response_list = []
    for file_object in files.getlist('user_file[]'):
        # file size
        file_size = get_file_size(file_object)
        if file_size > FILE_SIZE_THRESHOLD:
            continue

        # file_mimetype
        file_mimetype = file_object.mimetype
        if file_mimetype not in ACCEPTED_TYPES_LIST:
            continue

        # file name
        file_name = file_object.filename

        # file extension
        file_extension = file_object.filename.rsplit('.', 1)[-1]

        # update db and upload file upload file
        try:
            upload_to_s3(s3_bucket_object, file_object, s3_bucket_name)
            file_schema = S3File(extension=file_extension,
                                 title=title,
                                 name=file_name,
                                 mimeType=file_mimetype,
                                 size=file_size,
                                 webLink=S3_WEBLINK_STRUCTURE.format(
                                     bucket_name=s3_bucket_name,
                                     file_name=file_name))
            db.session.add(file_schema)
            db.session.commit()
            response_object = S3File.query.filter_by(name=file_name).first()
            response_object = response_object.__dict__
            del response_object['_sa_instance_state']
            response_list.append(response_object)
        except Exception:
            pass
    final_response_object = {'file_objects': response_list}
    return jsonify(final_response_object)
Пример #2
0
    def get_geojson_carto_gs(self,
                             filepath: tuple = (),
                             opts: dict = {}) -> dict:
        # [Step - 1] Get image + check color sampling
        img_path = os.path.join(BASE_DIR, filepath[0])
        img_tiff_path = os.path.join(BASE_DIR, filepath[1])
        img_extension = os.path.splitext(img_path)[1]
        img_name = ntpath.basename(img_path).replace(img_extension, '')
        img_base_path = img_path.replace(ntpath.basename(img_path), '')

        color_preset = self.data['color_presets'][self.options['color_preset']]
        logger.info('Color Preset (Carto Grayscale): ',
                    {'color_preset': color_preset})
        do_contour_normalization = bool(
            color_preset['building']['normalize_contours']
        ) if 'normalize_contours' in color_preset['building'] else False
        image = cv2.imread(img_path, 1)

        fc_bgr_building_gray = color_preset['building']['fill']['gray']
        fc_hsv_building_gray = bgr_color_to_hsv(fc_bgr_building_gray)

        if color_preset['building']['border']['type'] == 'relative':
            fc_hsv_building_gray_darker = self.transform_relative_color(
                fc_hsv_building_gray,
                color_preset['building']['border']['value']['gray'])
        else:
            fc_hsv_building_gray_darker = self.transform_color_string_to_float(
                color_preset['building']['border']['value']['gray'])

        logger.debug(
            self.logger_base_text + 'Color Info', {
                'fill_color_bgr': {
                    'gray': fc_bgr_building_gray
                },
                'fill_color_hsv': {
                    'gray': fc_hsv_building_gray
                },
                'border_color_hsv': {
                    'gray': fc_hsv_building_gray_darker
                }
            })

        # [Step-2] Do masking on HSV Image
        img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        hsv = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2HSV)

        mask_gray = cv2.inRange(hsv, fc_hsv_building_gray,
                                fc_hsv_building_gray_darker)
        final = cv2.bitwise_or(image, image, mask=mask_gray)

        # [Step-3] Find Contours
        json_contour_filepath = self.data['file']['json_contour'].replace(
            '<result_path>', self.data['path']['result']).replace(
                '<img_name>', img_name).replace('<preset>', 'carto-gs')
        json_contour_debug_filepath = self.data['file'][
            'json_contour_debug'].replace('<result_path>',
                                          self.data['path']['result']).replace(
                                              '<img_name>', img_name).replace(
                                                  '<preset>', 'carto-gs')
        geojson_filepath = self.data['file']['geojson'].replace(
            '<result_path>', self.data['path']['result']).replace(
                '<img_name>', img_name).replace('<preset>', 'carto-gs')

        final_gray = cv2.cvtColor(final, cv2.COLOR_BGR2GRAY)
        final_blurred = cv2.GaussianBlur(final_gray, (3, 3), 0)
        ret, final_thresh = cv2.threshold(final_blurred, 127, 255, 0)

        contours, hierarchy = cv2.findContours(final_thresh, cv2.RETR_EXTERNAL,
                                               cv2.CHAIN_APPROX_SIMPLE)

        # contour normalization
        if do_contour_normalization:
            contours = self.normalize_contours(contours)

        ctr_json_str = json.dumps(
            {
                'contours': contours,
                'hierarchy': hierarchy
            },
            default=json_np_default_parser)
        ctr_json = json.loads(ctr_json_str)

        ctr_points = []
        for cidx in range(len(ctr_json['contours'])):
            ctr_points.append(
                list(map(lambda x: x[0], ctr_json['contours'][cidx])))

        # [Step - 4] Find Contours Geographic Coordinates
        geotiff_image = img_path.replace(img_extension, '.tif')
        translate_coords = GeoTiffProcessor.get_multi_polygon_axis_point_coordinates(
            geotiff_image, ctr_points, {'debug': False})

        final_coords = []
        geo_features = []
        for poly in translate_coords['coords']:
            poly_coords = []
            poly_geo_coords = []
            for cr in poly:
                poly_coords.append({
                    'x': cr['x'],
                    'y': cr['y'],
                    'latitude': cr['lat'],
                    'longitude': cr['long']
                })
                poly_geo_coords.append((cr['long'], cr['lat']))

            # add final closing point
            poly_geo_coords.append((poly[0]['long'], poly[0]['lat']))
            final_coords.append(poly_coords)
            geo_feature = Feature(
                geometry=Polygon([poly_geo_coords], precision=15))
            geo_features.append(geo_feature)

        geo_feature_collection = FeatureCollection(geo_features)
        geo_feature_collection_dump = geojson_dumps(geo_feature_collection,
                                                    sort_keys=True)

        with open(json_contour_filepath, 'w') as outfile:
            json.dump(final_coords, outfile)

        with open(geojson_filepath, 'w') as outfile:
            outfile.write(geo_feature_collection_dump)

        # [Step-5] Draw contours to original image clone
        final_wctrs = copy(image)
        for c in contours:
            cv2.drawContours(final_wctrs, [c], 0,
                             color_preset['building']['contour'], 2)

        # Build result
        polygon_len = len(ctr_points)
        r = {
            'file_path': geojson_filepath,
            'file_size':
            str(get_file_size(geojson_filepath, SIZE_UNIT.KB)) + ' KB',
            'polygon_total': polygon_len
        }
        if 'return_polygon_data' in opts and bool(opts['return_polygon_data']):
            r['geojson'] = json.loads(geo_feature_collection_dump)

        if self.options['save_result']:
            result_ftemplate = self.data['path'][
                'result'] + img_name + '-carto-gs-<fnm>' + img_extension

            self.write_image_results(
                result_ftemplate, '<fnm>',
                [('step-1-2-hsv-building-gray', fc_hsv_building_gray),
                 ('step-2-image-bgr', image), ('step-3-image-rgb', img_rgb),
                 ('step-4-0-hsv', hsv), ('step-4-1-hsv-mask-gray', mask_gray),
                 ('step-5-final', final), ('step-6-image-gray', final_gray),
                 ('step-7-final-blurred', final_blurred),
                 ('step-8-final-thresh', final_thresh),
                 ('step-9-image-final-with-contours', final_wctrs)])

        if self.options['show_result']:
            show_image_results([
                ("Step - 1-1 (HSV Gray Color)",
                 np.uint8([[fc_hsv_building_gray]])),
                ("Step - 2 (Image - BGR)", image),
                ("Step - 3 ( Image - RGB)", img_rgb),
                ("Step - 4-0 (HSV)", hsv),
                ("Step - 4-1 (HSV - Gray)", mask_gray),
                ("Step - 5 (Final)", final),
                ("Step - 6 (Final - Gray)", final_gray),
                ("Step - 7 (Final - Gray Blurred)", final_blurred),
                ("Step - 8 (Final - Gray Thresh)", final_thresh),
                ("Step - 9 (Final - with contours)", final_wctrs)
            ])

            # [Step - ending] Clean - up
            del contours, hierarchy, image, img_rgb, hsv, final, final_gray, final_wctrs, final_blurred, final_thresh, mask_gray, fc_hsv_building_gray
            return r
        else:
            # [Step - ending] Clean - up
            del contours, hierarchy, image, img_rgb, hsv, final, final_gray, final_wctrs, final_blurred, final_thresh, mask_gray, fc_hsv_building_gray
            return r
Пример #3
0
    def get_geojson_osm(self, filepath: tuple = (), opts: dict = {}) -> dict:
        # [Step - 1] Get image + check color sampling
        img_path = os.path.join(BASE_DIR, filepath[0])
        img_tiff_path = os.path.join(BASE_DIR, filepath[1])
        img_extension = os.path.splitext(img_path)[1]
        img_name = ntpath.basename(img_path).replace(img_extension, '')
        img_base_path = img_path.replace(ntpath.basename(img_path), '')

        color_preset = self.data['color_presets'][self.options['color_preset']]
        logger.info('Color Preset (OSM): ', {'color_preset': color_preset})
        do_contour_normalization = bool(
            color_preset['building']['normalize_contours']
        ) if 'normalize_contours' in color_preset['building'] else False

        image_origin = cv2.imread(img_path, 1)
        if 'sharp_image' in color_preset['building']:
            sharp_img = self.unsharp_mask(
                image_origin, **color_preset['building']['sharp_image'])
            image_origin = copy(image_origin)

        image_new_contrast = []
        if 'adjust_contrast' in color_preset['building']:
            image = cv2.convertScaleAbs(
                image_origin,
                alpha=color_preset['building']['adjust_contrast']['alpha'],
                beta=color_preset['building']['adjust_contrast']['beta'])
            image_new_contrast = [
                cv2.convertScaleAbs(image_origin, alpha=1.0, beta=-10),
                cv2.convertScaleAbs(image_origin, alpha=1.0, beta=-20),
                cv2.convertScaleAbs(image_origin, alpha=1.0, beta=-30),
                cv2.convertScaleAbs(image_origin, alpha=1.0, beta=-50),
                cv2.convertScaleAbs(image_origin, alpha=1.0, beta=-60)
            ]
        else:
            image = copy(image_origin)

        light_brown = np.uint8([[color_preset['building']['fill']]])

        # Enhance image (ref: https://chrisalbon.com/machine_learning/preprocessing_images/enhance_contrast_of_greyscale_image/)
        # image = cv2.imread('images/plane_256x256.jpg', cv2.IMREAD_GRAYSCALE)
        # image_enhanced = cv2.equalizeHist(image)

        # Convert BGR to HSV for masking
        color_codes = []
        hsv_fill_color = cv2.cvtColor(light_brown, cv2.COLOR_BGR2HSV)
        # hsv_fill_color = cv2.cvtColor(light_brown, color_preset['building']['masking_color_mode'])

        # for index in hsv_fill_color:
        # color_codes = index[0]
        color_codes = hsv_fill_color[0][0]

        # [Step - 2] Do masking on HSV Image
        img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        # img_rgb =copy(image)

        hsv = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2HSV)
        # hsv = cv2.cvtColor(img_rgb, color_preset['building']['masking_color_mode'])

        fill_color = (float(color_codes[0]), float(color_codes[1]),
                      float(color_codes[2]))

        find_border_color = []
        if color_preset['building']['border']['type'] == 'relative':
            temp = []
            for idx, bbv in enumerate(
                    color_preset['building']['border']['value'], 0):
                if bbv[0] == '+':
                    temp.append(float(color_codes[idx]) + float(bbv[1:]))
                elif bbv[0] == '-':
                    temp.append(float(color_codes[idx]) - float(bbv[1:]))
                else:
                    temp.append(float(bbv))
            border_color = tuple(temp)

            # border_color = (float(color_codes[0]) + color_preset['building']['border']['value'][0], float(color_codes[1]) + color_preset['building']['border']['value'][1], float(color_codes[2]) + color_preset['building']['border']['value'][2])
        else:
            find_border_color = cv2.cvtColor(
                np.uint8([[color_preset['building']['border']['value']]]),
                cv2.COLOR_BGR2HSV)
            # find_border_color = cv2.cvtColor(np.uint8([[color_preset['building']['border']['value']]]), color_preset['building']['masking_color_mode'])
            border_color = (float(find_border_color[0][0][0]),
                            float(find_border_color[0][0][1]),
                            float(find_border_color[0][0][2]))

        logger.debug(
            self.logger_base_text + 'Color Info', {
                'fill_color': fill_color,
                'border_color': border_color,
                'float_border_color': find_border_color,
                'hsv_fill_color_codes': color_codes,
                'hsv_fill_color': hsv_fill_color
            })

        mask = cv2.inRange(hsv, fill_color, border_color)
        final = cv2.bitwise_and(image, image, mask=mask)

        # self.data['path']['result']
        # self.data['file']['json_contour']

        json_contour_filepath = self.data['file']['json_contour'].replace(
            '<result_path>', self.data['path']['result']).replace(
                '<img_name>', img_name).replace('<preset>', 'osm')
        json_contour_debug_filepath = self.data['file'][
            'json_contour_debug'].replace('<result_path>',
                                          self.data['path']['result']).replace(
                                              '<img_name>', img_name).replace(
                                                  '<preset>', 'osm')
        geojson_filepath = self.data['file']['geojson'].replace(
            '<result_path>', self.data['path']['result']).replace(
                '<img_name>', img_name).replace('<preset>', 'osm')

        final_gray = cv2.cvtColor(final, cv2.COLOR_BGR2GRAY)
        final_blurred = cv2.GaussianBlur(final_gray, (5, 5), 0)
        ret, final_thresh = cv2.threshold(final_blurred, 127, 255, 0)
        contours, hierarchy = cv2.findContours(final_thresh, cv2.RETR_EXTERNAL,
                                               cv2.CHAIN_APPROX_SIMPLE)

        # contour normalization
        if do_contour_normalization:
            contours = self.normalize_contours(contours)

        ctr_json_str = json.dumps(
            {
                'contours': contours,
                'hierarchy': hierarchy
            },
            default=json_np_default_parser)
        ctr_json = json.loads(ctr_json_str)

        ctr_points = []
        for cidx in range(len(ctr_json['contours'])):
            ctr_points.append(
                list(map(lambda x: x[0], ctr_json['contours'][cidx])))

        # [Step - 4] Find Contours Geographic Coordinates
        geotiff_image = img_tiff_path
        translate_coords = GeoTiffProcessor.get_multi_polygon_axis_point_coordinates(
            geotiff_image, ctr_points, {'debug': False})

        final_coords = []
        geo_features = []
        for poly in translate_coords['coords']:
            poly_coords = []
            poly_geo_coords = []
            for cr in poly:
                poly_coords.append({
                    'x': cr['x'],
                    'y': cr['y'],
                    'latitude': cr['lat'],
                    'longitude': cr['long']
                })
                poly_geo_coords.append((cr['long'], cr['lat']))

            # add final closing point
            poly_geo_coords.append((poly[0]['long'], poly[0]['lat']))
            final_coords.append(poly_coords)
            geo_feature = Feature(
                geometry=Polygon([poly_geo_coords], precision=15))
            geo_features.append(geo_feature)

        geo_feature_collection = FeatureCollection(geo_features)
        geo_feature_collection_dump = geojson_dumps(geo_feature_collection,
                                                    sort_keys=True)

        with open(json_contour_filepath, 'w') as outfile:
            json.dump(final_coords, outfile)

        with open(geojson_filepath, 'w') as outfile:
            outfile.write(geo_feature_collection_dump)

        # [Step - 5] Draw contours to original image clone
        final_wctrs = copy(
            image
        )  # final_wctrs = copy(image_origin)# final_wctrs = copy(final)
        for c in contours:
            cv2.drawContours(final_wctrs, [c], 0,
                             color_preset['building']['contour'], 2)

        # Build result
        polygon_len = len(ctr_points)
        r = {
            'file_path': geojson_filepath,
            'file_size':
            str(get_file_size(geojson_filepath, SIZE_UNIT.KB)) + ' KB',
            'polygon_total': polygon_len
        }
        if 'return_polygon_data' in opts and bool(opts['return_polygon_data']):
            r['geojson'] = json.loads(geo_feature_collection_dump)

        if self.options['save_result']:
            result_ftemplate = self.data['path'][
                'result'] + img_name + '-<fnm>' + img_extension
            if 'sharp_image' in color_preset['building']:
                cv2.imwrite(
                    result_ftemplate.replace('<fnm>', 'step-0-sharpen-1'),
                    sharp_img)
            if 'adjust_contrast' in color_preset['building']:
                cv2.imwrite(
                    result_ftemplate.replace('<fnm>', 'step-0-contrast-1'),
                    image_new_contrast[0])
                cv2.imwrite(
                    result_ftemplate.replace('<fnm>', 'step-0-contrast-2'),
                    image_new_contrast[1])
                cv2.imwrite(
                    result_ftemplate.replace('<fnm>', 'step-0-contrast-3'),
                    image_new_contrast[2])
                cv2.imwrite(
                    result_ftemplate.replace('<fnm>', 'step-0-contrast-4'),
                    image_new_contrast[3])
                cv2.imwrite(
                    result_ftemplate.replace('<fnm>', 'step-0-contrast-5'),
                    image_new_contrast[4])
            cv2.imwrite(
                result_ftemplate.replace('<fnm>', 'step-1-hsv-light-color'),
                hsv_fill_color)
            cv2.imwrite(result_ftemplate.replace('<fnm>', 'step-2-image-bgr'),
                        image)
            cv2.imwrite(result_ftemplate.replace('<fnm>', 'step-3-image-rgb'),
                        img_rgb)
            cv2.imwrite(result_ftemplate.replace('<fnm>', 'step-4-hsv'), hsv)
            cv2.imwrite(result_ftemplate.replace('<fnm>', 'step-5-final'),
                        final)
            cv2.imwrite(result_ftemplate.replace('<fnm>', 'step-6-image-gray'),
                        final_gray)
            cv2.imwrite(
                result_ftemplate.replace('<fnm>', 'step-7-final-blurred'),
                final_blurred)
            cv2.imwrite(
                result_ftemplate.replace('<fnm>', 'step-8-final-thresh'),
                final_thresh)
            cv2.imwrite(
                result_ftemplate.replace('<fnm>',
                                         'step-9-image-final-with-contours'),
                final_wctrs)

        if self.options['show_result']:
            cv2.imshow("Step - 1 (HSV Light Color)", hsv_fill_color)
            cv2.imshow("Step - 2 (Image - BGR)", image)
            cv2.imshow("Step - 3 ( Image - RGB)", img_rgb)
            cv2.imshow("Step - 4 (HSV)", hsv)
            cv2.imshow("Step - 5 (Final)", final)
            cv2.imshow("Step - 6 (Final - Gray)", final_gray)
            cv2.imshow("Step - 7 (Final - Gray Blurred)", final_blurred)
            cv2.imshow("Step - 8 (Final - Gray Thresh)", final_thresh)
            cv2.imshow("Step - 9 (Final - with contours)", final_wctrs)
            # cv2.imshow("Step - 10 (Final - with shape contours)", final_shape_ctrs)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

            # [Step - ending] Clean - up
            del contours, hierarchy, image, hsv_fill_color, img_rgb, hsv, final, final_gray, final_wctrs, final_blurred, final_thresh, ctr_json, ctr_json_str, final_coords, geo_features, ctr_points
            return r
        else:
            # [Step - ending] Clean - up
            del contours, hierarchy, image, hsv_fill_color, img_rgb, hsv, final, final_gray, final_wctrs, final_blurred, final_thresh, ctr_json, ctr_json_str, final_coords, geo_features, ctr_points
            return r