def setUp(self): self.app = create_app('testing') self.app_context = self.app.app_context() self.app_context.push() db.create_all() Role.insert_roles() self.client = self.app.test_client(use_cookies=True)
def setUp(self): self.app = create_app('testing') self.app_context = self.app.app_context() self.app_context.push() db.create_all()
def setUp(self): db.create_all() db.session.commit()
def init(): db.create_all()
from flask import render_template, url_for, flash, redirect from app1 import app, db from app1.forms import RegistrationForm from app1.models import User from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split # Importing the necessary libraries from sklearn.neighbors import KNeighborsClassifier import pandas as pd import numpy as np db.create_all() @app.route("/", methods=['GET', 'POST']) def register(): form = RegistrationForm() if form.validate_on_submit(): # user = User(oxygen_concentration=form.oxygen_concentration.data, dry_cough=form.dry_cough.data, # septic_shock=form.septic_shock.data, age=form.age.data, breathe_rate=form.breathe_rate.data, # prior_disease=form.prior_disease.data) dataset = pd.read_csv( 'C:\ProgramFiles\JetBrains\PyCharmCommunityEdition2019.3.3\Covid19_Final_dataset.csv' ) # Reading the covid-19 dataset using pandas # print(dataset.head()) dataset = dataset.replace([np.inf, -np.inf], np.nan).dropna(axis=0) # Cleaning the dataset to increase the performance septic_shock = LabelEncoder() dry_cough = LabelEncoder() # Labelling the string data as integers prior_disease = LabelEncoder() dataset['Septic_Shock'] = septic_shock.fit_transform(