def scaleTemplate(templatearray, scalefactor=1.0, boxsize=None):
        if(templatearray.shape[0] != templatearray.shape[1]):
                apDisplay.printWarning("template shape is NOT square, this may cause errors")

        if abs(scalefactor - 1.0) > 0.01:
                apDisplay.printMsg("scaling template by a factor of "+str(scalefactor))
                templatearray = apImage.scaleImage(templatearray, scalefactor)

        #make sure the box size is divisible by 16
        if boxsize is not None or (templatearray.shape[0] % 16 != 0):
                edgeavg = apImage.meanEdgeValue(templatearray)
                origsize = templatearray.shape[0]
                if boxsize is None:
                        # minimal padisize is 16
                        padsize  = max(int(math.floor(float(origsize)/16)*16),16)
                else:
                        padsize = boxsize
                padshape = numpy.array([padsize,padsize])
                apDisplay.printMsg("changing box size from "+str(origsize)+" to "+str(padsize))
                if origsize > padsize:
                        #shrink image
                        templatearray = apImage.frame_cut(templatearray, padshape)
                else:
                        #grow image
                        templatearray = apImage.frame_constant(templatearray, padshape, cval=edgeavg)

        if templatearray.shape[0] < 20 or templatearray.shape[1] < 20:
                apDisplay.printWarning("template is only "+str(templatearray.shape[0])+" pixels wide\n"+\
                  " and may only correlation noise in the image")

        return templatearray
def scaleTemplate(templatearray, scalefactor=1.0, boxsize=None):
    if (templatearray.shape[0] != templatearray.shape[1]):
        apDisplay.printWarning(
            "template shape is NOT square, this may cause errors")

    if abs(scalefactor - 1.0) > 0.01:
        apDisplay.printMsg("scaling template by a factor of " +
                           str(scalefactor))
        templatearray = apImage.scaleImage(templatearray, scalefactor)

    #make sure the box size is divisible by 16
    if boxsize is not None or (templatearray.shape[0] % 16 != 0):
        edgeavg = apImage.meanEdgeValue(templatearray)
        origsize = templatearray.shape[0]
        if boxsize is None:
            # minimal padisize is 16
            padsize = max(int(math.floor(float(origsize) / 16) * 16), 16)
        else:
            padsize = boxsize
        padshape = numpy.array([padsize, padsize])
        apDisplay.printMsg("changing box size from " + str(origsize) + " to " +
                           str(padsize))
        if origsize > padsize:
            #shrink image
            templatearray = apImage.frame_cut(templatearray, padshape)
        else:
            #grow image
            templatearray = apImage.frame_constant(templatearray,
                                                   padshape,
                                                   cval=edgeavg)

    if templatearray.shape[0] < 20 or templatearray.shape[1] < 20:
        apDisplay.printWarning("template is only "+str(templatearray.shape[0])+" pixels wide\n"+\
          " and may only correlation noise in the image")

    return templatearray
Пример #3
0
def real_fft3d(volume, *args, **kwargs):
    padshape = numpy.asarray(volume.shape) * 1
    padvolume = apImage.frame_constant(volume, padshape, volume.mean())
    fft = fftpack.fftn(padvolume, *args, **kwargs)
    return fft
Пример #4
0
def real_fft2d(image, *args, **kwargs):
    padshape = numpy.asarray(image.shape) * 1
    padimage = apImage.frame_constant(image, padshape, image.mean())
    fft = fftpack.fft2(padimage, *args, **kwargs)
    # normfft = (fft - fft.mean())/fft.std()
    return fft
Пример #5
0
	def processImage(self, imgdata):
		self.ctfvalues = {}
		bestdef  = ctfdb.getBestCtfByResolution(imgdata, msg=True)
		apix = apDatabase.getPixelSize(imgdata)
		if (not (self.params['onepass'] and self.params['zeropass'])):
			maskhighpass = False
			ace2inputpath = os.path.join(imgdata['session']['image path'],imgdata['filename']+".mrc")
		else:
			maskhighpass = True
			filterimg = apImage.maskHighPassFilter(imgdata['image'],apix,1,self.params['zeropass'],self.params['onepass'])
			ace2inputpath = os.path.join(self.params['rundir'],imgdata['filename']+".mrc")
			mrc.write(filterimg,ace2inputpath)

		# make sure that the image is a square
		dimx = imgdata['camera']['dimension']['x']
		dimy = imgdata['camera']['dimension']['y']
		if dimx != dimy:
			dims = [dimx,dimy]
			dims.sort()
			apDisplay.printMsg("resizing image: %ix%i to %ix%i" % (dimx,dimy,dims[0],dims[0]))
			mrcarray = apImage.mrcToArray(ace2inputpath,msg=False)
			clippedmrc = apImage.frame_cut(mrcarray,[dims[0],dims[0]])
			ace2inputpath = os.path.join(self.params['rundir'],imgdata['filename']+".mrc")
			apImage.arrayToMrc(clippedmrc,ace2inputpath,msg=False)

		### pad out image to speed up FFT calculations for non-standard image sizes
		print "checking prime factor"
		if primefactor.isGoodStack(dimx) is False:
			goodsize = primefactor.getNextEvenPrime(dimx)
			factor = float(goodsize) / float(dimx)
			apDisplay.printMsg("padding image:  %ix%i to %ix%i" % (dimx,dimy,dimx*factor,dimy*factor))
			mrcarray = apImage.mrcToArray(ace2inputpath,msg=False)
#			paddedmrc = imagefun.pad(mrcarray, None, factor)
			paddedmrc = apImage.frame_constant(mrcarray, (dimx*factor,dimy*factor), cval=mrcarray.mean())
			ace2inputpath = os.path.join(self.params['rundir'],imgdata['filename']+".mrc")
			apImage.arrayToMrc(paddedmrc,ace2inputpath,msg=False)

		inputparams = {
			'input': ace2inputpath,
			'cs': self.params['cs'],
			'kv': imgdata['scope']['high tension']/1000.0,
			'apix': apix,
			'binby': self.params['bin'],
		}

		### make standard input for ACE 2
		apDisplay.printMsg("Ace2 executable: "+self.ace2exe)
		commandline = ( self.ace2exe
			+ " -i " + str(inputparams['input'])
			+ " -b " + str(inputparams['binby'])
			+ " -c " + str(inputparams['cs'])
			+ " -k " + str(inputparams['kv'])
			+ " -a " + str(inputparams['apix'])
			+ " -e " + str(self.params['edge_b'])+","+str(self.params['edge_t'])
			+ " -r " + str(self.params['rotblur'])
			+ "\n" )

		### run ace2
		apDisplay.printMsg("running ace2 at "+time.asctime())
		apDisplay.printColor(commandline, "purple")

		t0 = time.time()

		if self.params['verbose'] is True:
			ace2proc = subprocess.Popen(commandline, shell=True)
		else:
			aceoutf = open("ace2.out", "a")
			aceerrf = open("ace2.err", "a")
			ace2proc = subprocess.Popen(commandline, shell=True, stderr=aceerrf, stdout=aceoutf)

		ace2proc.wait()

		### check if ace2 worked
		basename = os.path.basename(ace2inputpath)
		imagelog = basename+".ctf.txt"
		if not os.path.isfile(imagelog) and self.stats['count'] <= 1:
			### ace2 always crashes on first image??? .fft_wisdom file??
			time.sleep(1)

			if self.params['verbose'] is True:
				ace2proc = subprocess.Popen(commandline, shell=True)
			else:
				aceoutf = open("ace2.out", "a")
				aceerrf = open("ace2.err", "a")
				ace2proc = subprocess.Popen(commandline, shell=True, stderr=aceerrf, stdout=aceoutf)

			ace2proc.wait()

		if self.params['verbose'] is False:
			aceoutf.close()
			aceerrf.close()
		if not os.path.isfile(imagelog):
			lddcmd = "ldd "+self.ace2exe
			lddproc = subprocess.Popen(lddcmd, shell=True)
			lddproc.wait()
			apDisplay.printError("ace2 did not run")
		apDisplay.printMsg("ace2 completed in " + apDisplay.timeString(time.time()-t0))

		### parse log file
		self.ctfvalues = {
			'cs': self.params['cs'],
			'volts': imgdata['scope']['high tension'],
		}
		logf = open(imagelog, "r")
		apDisplay.printMsg("reading log file %s"%(imagelog))
		for line in logf:
			sline = line.strip()
			if re.search("^Final Defocus: ", sline):
				### old ACE2
				apDisplay.printError("This old version of ACE2 has a bug in the astigmastism, please upgrade ACE2 now")
				#parts = sline.split()
				#self.ctfvalues['defocus1'] = float(parts[2])
				#self.ctfvalues['defocus2'] = float(parts[3])
				### convert to degrees
				#self.ctfvalues['angle_astigmatism'] = math.degrees(float(parts[4]))
			elif re.search("^Final Defocus \(m,m,deg\):", sline):
				### new ACE2
				apDisplay.printMsg("Reading new ACE2 defocus")
				parts = sline.split()
				#print parts
				self.ctfvalues['defocus1'] = float(parts[3])
				self.ctfvalues['defocus2'] = float(parts[4])
				# ace2 defines negative angle from +x toward +y
				self.ctfvalues['angle_astigmatism'] = -float(parts[5])
			elif re.search("^Amplitude Contrast:",sline):
				parts = sline.split()
				self.ctfvalues['amplitude_contrast'] = float(parts[2])
			elif re.search("^Confidence:",sline):
				parts = sline.split()
				self.ctfvalues['confidence'] = float(parts[1])
				self.ctfvalues['confidence_d'] = float(parts[1])
		logf.close()

		### summary stats
		apDisplay.printMsg("============")
		avgdf = (self.ctfvalues['defocus1']+self.ctfvalues['defocus2'])/2.0
		ampconst = 100.0*self.ctfvalues['amplitude_contrast']
		pererror = 100.0 * (self.ctfvalues['defocus1']-self.ctfvalues['defocus2']) / avgdf
		apDisplay.printMsg("Defocus: %.3f x %.3f um (%.2f percent astigmatism)"%
			(self.ctfvalues['defocus1']*1.0e6, self.ctfvalues['defocus2']*1.0e6, pererror ))
		apDisplay.printMsg("Angle astigmatism: %.2f degrees"%(self.ctfvalues['angle_astigmatism']))
		apDisplay.printMsg("Amplitude contrast: %.2f percent"%(ampconst))

		apDisplay.printColor("Final confidence: %.3f"%(self.ctfvalues['confidence']),'cyan')

		### double check that the values are reasonable
		if avgdf > self.params['maxdefocus'] or avgdf < self.params['mindefocus']:
			apDisplay.printWarning("bad defocus estimate, not committing values to database")
			self.badprocess = True

		if ampconst < 0.0 or ampconst > 80.0:
			apDisplay.printWarning("bad amplitude contrast, not committing values to database")
			self.badprocess = True

		if self.ctfvalues['confidence'] < 0.2:
			apDisplay.printWarning("bad confidence value, not committing values to database")
			self.badprocess = True

		## create power spectra jpeg
		mrcfile = imgdata['filename']+".mrc.edge.mrc"
		if os.path.isfile(mrcfile):
			jpegfile = os.path.join(self.powerspecdir, apDisplay.short(imgdata['filename'])+".jpg")
			ps = apImage.mrcToArray(mrcfile,msg=False)
			c = numpy.array(ps.shape)/2.0
			ps[c[0]-0,c[1]-0] = ps.mean()
			ps[c[0]-1,c[1]-0] = ps.mean()
			ps[c[0]-0,c[1]-1] = ps.mean()
			ps[c[0]-1,c[1]-1] = ps.mean()
			#print "%.3f -- %.3f -- %.3f"%(ps.min(), ps.mean(), ps.max())
			ps = numpy.log(ps+1.0)
			ps = (ps-ps.mean())/ps.std()
			cutoff = -2.0*ps.min()
			ps = numpy.where(ps > cutoff, cutoff, ps)
			cutoff = ps.mean()
			ps = numpy.where(ps < cutoff, cutoff, ps)
			#print "%.3f -- %.3f -- %.3f"%(ps.min(), ps.mean(), ps.max())
			apImage.arrayToJpeg(ps, jpegfile, msg=False)
			apFile.removeFile(mrcfile)
			self.ctfvalues['graph3'] = jpegfile
		otherfiles = glob.glob(imgdata['filename']+".*.txt")

		### remove extra debugging files
		for filename in otherfiles:
			if filename[-9:] == ".norm.txt":
				continue
			elif filename[-8:] == ".ctf.txt":
				continue
			else:
				apFile.removeFile(filename)

		if maskhighpass and os.path.isfile(ace2inputpath):
			apFile.removeFile(ace2inputpath)

		return
def real_fft3d(volume, *args, **kwargs):
        padshape = numpy.asarray(volume.shape)*1
        padvolume = apImage.frame_constant(volume, padshape, volume.mean())
        fft = fftpack.fftn(padvolume, *args, **kwargs)
        return fft
def real_fft2d(image, *args, **kwargs):
        padshape = numpy.asarray(image.shape)*1
        padimage = apImage.frame_constant(image, padshape, image.mean())
        fft = fftpack.fft2(padimage, *args, **kwargs)
        #normfft = (fft - fft.mean())/fft.std()
        return fft
	def real_fft2d(self, image, *args, **kwargs):
		padshape = numpy.asarray(image.shape)*1
		padimage = apImage.frame_constant(image, padshape, image.mean())
		fft = fftpack.fft2(padimage, *args, **kwargs)
		return fft
def getTiltedRotateShift(img1, img2, tiltdiff, angle=0, bin=1, msg=True):
        """
        takes two images tilted 
        with respect to one another 
        and tries to find overlap
        
        img1 (as numpy array)
        img2 (as numpy array)
        tiltdiff (in degrees)
                negative, img1 is more compressed (tilted)
                positive, img2 is more compressed (tilted)
        """

        ### untilt images by stretching and compressing
        # choose angle s/t compressFactor = 1/stretchFactor
        # this only works if one image is untilted (RCT) of both images are opposite tilt (OTR)
        #halftilt = abs(tiltdiff)/2.0
        halftiltrad = math.acos(math.sqrt(math.cos(abs(tiltdiff)/180.0*math.pi)))
        # go from zero tilt to half tilt
        compressFactor = math.cos(halftiltrad)
        # go from max tilt to half tilt
        stretchFactor = math.cos(halftiltrad) / math.cos(abs(tiltdiff)/180.0*math.pi)
        if tiltdiff > 0:
                if msg is True:
                        apDisplay.printMsg("compress image 1")
                untilt1 = transformImage(img1, compressFactor, angle)
                untilt2 = transformImage(img2, stretchFactor, angle)
                xfactor = compressFactor
        else:
                if msg is True:
                        apDisplay.printMsg("stretch image 1")
                untilt1 = transformImage(img1, stretchFactor, angle)
                untilt2 = transformImage(img2, compressFactor, angle)
                xfactor = stretchFactor

        ### filtering was done earlier
        filt1 = untilt1
        filt2 = untilt2

        if filt1.shape != filt2.shape:
                newshape = ( max(filt1.shape[0],filt2.shape[0]), max(filt1.shape[1],filt2.shape[1]) )
                apDisplay.printMsg("Resizing images to: "+str(newshape))
                filt1 = apImage.frame_constant(filt1, newshape, filt1.mean())
                filt2 = apImage.frame_constant(filt2, newshape, filt2.mean())

        ### cross-correlate
        cc = correlator.cross_correlate(filt1, filt2, pad=True)
        rad = min(cc.shape)/20.0
        cc = apImage.highPassFilter(cc, radius=rad)
        cc = apImage.normRange(cc)
        cc = blackEdges(cc)
        cc = apImage.normRange(cc)
        cc = blackEdges(cc)
        cc = apImage.normRange(cc)
        cc = apImage.lowPassFilter(cc, radius=10.0)

        #find peak
        peakdict = peakfinder.findSubpixelPeak(cc, lpf=0)
        #import pprint
        #pprint.pprint(peak)
        pixpeak = peakdict['subpixel peak']
        if msg is True:
                apDisplay.printMsg("Pixel peak: "+str(pixpeak))
                apImage.arrayToJpegPlusPeak(cc, "guess-cross-ang"+str(abs(angle))+".jpg", pixpeak)

        rawpeak = numpy.array([pixpeak[1], pixpeak[0]]) #swap coord
        shift = numpy.asarray(correlator.wrap_coord(rawpeak, cc.shape))*bin

        if msg is True:
                apDisplay.printMsg("Found xy-shift btw two images"
                        +";\n\t SNR= "+str(round(peakdict['snr'],2))
                        +";\n\t halftilt= "+str(round(halftiltrad*180/math.pi, 3))
                        +";\n\t compressFactor= "+str(round(compressFactor, 3))
                        +";\n\t stretchFactor= "+str(round(stretchFactor, 3))
                        +";\n\t xFactor= "+str(round(xfactor, 3))
                        +";\n\t rawpeak= "+str(numpy.around(rawpeak*bin, 1))
                        +";\n\t shift= "+str(numpy.around(shift, 1))
                )

        return shift, xfactor, peakdict['snr']
Пример #10
0
    def processImage(self, imgdata):
        self.ctfvalues = {}
        bestdef = ctfdb.getBestCtfByResolution(imgdata, msg=True)
        apix = apDatabase.getPixelSize(imgdata)
        if (not (self.params['onepass'] and self.params['zeropass'])):
            maskhighpass = False
            ace2inputpath = os.path.join(imgdata['session']['image path'],
                                         imgdata['filename'] + ".mrc")
        else:
            maskhighpass = True
            filterimg = apImage.maskHighPassFilter(imgdata['image'], apix, 1,
                                                   self.params['zeropass'],
                                                   self.params['onepass'])
            ace2inputpath = os.path.join(self.params['rundir'],
                                         imgdata['filename'] + ".mrc")
            mrc.write(filterimg, ace2inputpath)

        # make sure that the image is a square
        dimx = imgdata['camera']['dimension']['x']
        dimy = imgdata['camera']['dimension']['y']
        if dimx != dimy:
            dims = [dimx, dimy]
            dims.sort()
            apDisplay.printMsg("resizing image: %ix%i to %ix%i" %
                               (dimx, dimy, dims[0], dims[0]))
            mrcarray = apImage.mrcToArray(ace2inputpath, msg=False)
            clippedmrc = apImage.frame_cut(mrcarray, [dims[0], dims[0]])
            ace2inputpath = os.path.join(self.params['rundir'],
                                         imgdata['filename'] + ".mrc")
            apImage.arrayToMrc(clippedmrc, ace2inputpath, msg=False)

        ### pad out image to speed up FFT calculations for non-standard image sizes
        print "checking prime factor"
        if primefactor.isGoodStack(dimx) is False:
            goodsize = primefactor.getNextEvenPrime(dimx)
            factor = float(goodsize) / float(dimx)
            apDisplay.printMsg("padding image:  %ix%i to %ix%i" %
                               (dimx, dimy, dimx * factor, dimy * factor))
            mrcarray = apImage.mrcToArray(ace2inputpath, msg=False)
            #			paddedmrc = imagefun.pad(mrcarray, None, factor)
            paddedmrc = apImage.frame_constant(mrcarray,
                                               (dimx * factor, dimy * factor),
                                               cval=mrcarray.mean())
            ace2inputpath = os.path.join(self.params['rundir'],
                                         imgdata['filename'] + ".mrc")
            apImage.arrayToMrc(paddedmrc, ace2inputpath, msg=False)

        inputparams = {
            'input': ace2inputpath,
            'cs': self.params['cs'],
            'kv': imgdata['scope']['high tension'] / 1000.0,
            'apix': apix,
            'binby': self.params['bin'],
        }

        ### make standard input for ACE 2
        apDisplay.printMsg("Ace2 executable: " + self.ace2exe)
        commandline = (self.ace2exe + " -i " + str(inputparams['input']) +
                       " -b " + str(inputparams['binby']) + " -c " +
                       str(inputparams['cs']) + " -k " +
                       str(inputparams['kv']) + " -a " +
                       str(inputparams['apix']) + " -e " +
                       str(self.params['edge_b']) + "," +
                       str(self.params['edge_t']) + " -r " +
                       str(self.params['rotblur']) + "\n")

        ### run ace2
        apDisplay.printMsg("running ace2 at " + time.asctime())
        apDisplay.printColor(commandline, "purple")

        t0 = time.time()

        if self.params['verbose'] is True:
            ace2proc = subprocess.Popen(commandline, shell=True)
        else:
            aceoutf = open("ace2.out", "a")
            aceerrf = open("ace2.err", "a")
            ace2proc = subprocess.Popen(commandline,
                                        shell=True,
                                        stderr=aceerrf,
                                        stdout=aceoutf)

        ace2proc.wait()

        ### check if ace2 worked
        basename = os.path.basename(ace2inputpath)
        imagelog = basename + ".ctf.txt"
        if not os.path.isfile(imagelog) and self.stats['count'] <= 1:
            ### ace2 always crashes on first image??? .fft_wisdom file??
            time.sleep(1)

            if self.params['verbose'] is True:
                ace2proc = subprocess.Popen(commandline, shell=True)
            else:
                aceoutf = open("ace2.out", "a")
                aceerrf = open("ace2.err", "a")
                ace2proc = subprocess.Popen(commandline,
                                            shell=True,
                                            stderr=aceerrf,
                                            stdout=aceoutf)

            ace2proc.wait()

        if self.params['verbose'] is False:
            aceoutf.close()
            aceerrf.close()
        if not os.path.isfile(imagelog):
            lddcmd = "ldd " + self.ace2exe
            lddproc = subprocess.Popen(lddcmd, shell=True)
            lddproc.wait()
            apDisplay.printError("ace2 did not run")
        apDisplay.printMsg("ace2 completed in " +
                           apDisplay.timeString(time.time() - t0))

        ### parse log file
        self.ctfvalues = {
            'cs': self.params['cs'],
            'volts': imgdata['scope']['high tension'],
        }
        logf = open(imagelog, "r")
        apDisplay.printMsg("reading log file %s" % (imagelog))
        for line in logf:
            sline = line.strip()
            if re.search("^Final Defocus: ", sline):
                ### old ACE2
                apDisplay.printError(
                    "This old version of ACE2 has a bug in the astigmastism, please upgrade ACE2 now"
                )
                #parts = sline.split()
                #self.ctfvalues['defocus1'] = float(parts[2])
                #self.ctfvalues['defocus2'] = float(parts[3])
                ### convert to degrees
                #self.ctfvalues['angle_astigmatism'] = math.degrees(float(parts[4]))
            elif re.search("^Final Defocus \(m,m,deg\):", sline):
                ### new ACE2
                apDisplay.printMsg("Reading new ACE2 defocus")
                parts = sline.split()
                #print parts
                self.ctfvalues['defocus1'] = float(parts[3])
                self.ctfvalues['defocus2'] = float(parts[4])
                # ace2 defines negative angle from +x toward +y
                self.ctfvalues['angle_astigmatism'] = -float(parts[5])
            elif re.search("^Amplitude Contrast:", sline):
                parts = sline.split()
                self.ctfvalues['amplitude_contrast'] = float(parts[2])
            elif re.search("^Confidence:", sline):
                parts = sline.split()
                self.ctfvalues['confidence'] = float(parts[1])
                self.ctfvalues['confidence_d'] = float(parts[1])
        logf.close()

        ### summary stats
        apDisplay.printMsg("============")
        avgdf = (self.ctfvalues['defocus1'] + self.ctfvalues['defocus2']) / 2.0
        ampconst = 100.0 * self.ctfvalues['amplitude_contrast']
        pererror = 100.0 * (self.ctfvalues['defocus1'] -
                            self.ctfvalues['defocus2']) / avgdf
        apDisplay.printMsg(
            "Defocus: %.3f x %.3f um (%.2f percent astigmatism)" %
            (self.ctfvalues['defocus1'] * 1.0e6,
             self.ctfvalues['defocus2'] * 1.0e6, pererror))
        apDisplay.printMsg("Angle astigmatism: %.2f degrees" %
                           (self.ctfvalues['angle_astigmatism']))
        apDisplay.printMsg("Amplitude contrast: %.2f percent" % (ampconst))

        apDisplay.printColor(
            "Final confidence: %.3f" % (self.ctfvalues['confidence']), 'cyan')

        ### double check that the values are reasonable
        if avgdf > self.params['maxdefocus'] or avgdf < self.params[
                'mindefocus']:
            apDisplay.printWarning(
                "bad defocus estimate, not committing values to database")
            self.badprocess = True

        if ampconst < 0.0 or ampconst > 80.0:
            apDisplay.printWarning(
                "bad amplitude contrast, not committing values to database")
            self.badprocess = True

        if self.ctfvalues['confidence'] < 0.2:
            apDisplay.printWarning(
                "bad confidence value, not committing values to database")
            self.badprocess = True

        ## create power spectra jpeg
        mrcfile = imgdata['filename'] + ".mrc.edge.mrc"
        if os.path.isfile(mrcfile):
            jpegfile = os.path.join(
                self.powerspecdir,
                apDisplay.short(imgdata['filename']) + ".jpg")
            ps = apImage.mrcToArray(mrcfile, msg=False)
            c = numpy.array(ps.shape) / 2.0
            ps[c[0] - 0, c[1] - 0] = ps.mean()
            ps[c[0] - 1, c[1] - 0] = ps.mean()
            ps[c[0] - 0, c[1] - 1] = ps.mean()
            ps[c[0] - 1, c[1] - 1] = ps.mean()
            #print "%.3f -- %.3f -- %.3f"%(ps.min(), ps.mean(), ps.max())
            ps = numpy.log(ps + 1.0)
            ps = (ps - ps.mean()) / ps.std()
            cutoff = -2.0 * ps.min()
            ps = numpy.where(ps > cutoff, cutoff, ps)
            cutoff = ps.mean()
            ps = numpy.where(ps < cutoff, cutoff, ps)
            #print "%.3f -- %.3f -- %.3f"%(ps.min(), ps.mean(), ps.max())
            apImage.arrayToJpeg(ps, jpegfile, msg=False)
            apFile.removeFile(mrcfile)
            self.ctfvalues['graph3'] = jpegfile
        otherfiles = glob.glob(imgdata['filename'] + ".*.txt")

        ### remove extra debugging files
        for filename in otherfiles:
            if filename[-9:] == ".norm.txt":
                continue
            elif filename[-8:] == ".ctf.txt":
                continue
            else:
                apFile.removeFile(filename)

        if maskhighpass and os.path.isfile(ace2inputpath):
            apFile.removeFile(ace2inputpath)

        return
Пример #11
0
def getTiltedRotateShift(img1, img2, tiltdiff, angle=0, bin=1, msg=True):
	"""
	takes two images tilted 
	with respect to one another 
	and tries to find overlap
	
	img1 (as numpy array)
	img2 (as numpy array)
	tiltdiff (in degrees)
		negative, img1 is more compressed (tilted)
		positive, img2 is more compressed (tilted)
	"""

	### untilt images by stretching and compressing
	# choose angle s/t compressFactor = 1/stretchFactor
	# this only works if one image is untilted (RCT) of both images are opposite tilt (OTR)
	#halftilt = abs(tiltdiff)/2.0
	halftiltrad = math.acos(math.sqrt(math.cos(abs(tiltdiff)/180.0*math.pi)))
	# go from zero tilt to half tilt
	compressFactor = math.cos(halftiltrad)
	# go from max tilt to half tilt
	stretchFactor = math.cos(halftiltrad) / math.cos(abs(tiltdiff)/180.0*math.pi)
	if tiltdiff > 0:
		if msg is True:
			apDisplay.printMsg("compress image 1")
		untilt1 = transformImage(img1, compressFactor, angle)
		untilt2 = transformImage(img2, stretchFactor, angle)
		xfactor = compressFactor
	else:
		if msg is True:
			apDisplay.printMsg("stretch image 1")
		untilt1 = transformImage(img1, stretchFactor, angle)
		untilt2 = transformImage(img2, compressFactor, angle)
		xfactor = stretchFactor

	### filtering was done earlier
	filt1 = untilt1
	filt2 = untilt2

	if filt1.shape != filt2.shape:
		newshape = ( max(filt1.shape[0],filt2.shape[0]), max(filt1.shape[1],filt2.shape[1]) )
		apDisplay.printMsg("Resizing images to: "+str(newshape))
		filt1 = apImage.frame_constant(filt1, newshape, filt1.mean())
		filt2 = apImage.frame_constant(filt2, newshape, filt2.mean())

	### cross-correlate
	cc = correlator.cross_correlate(filt1, filt2, pad=True)
	rad = min(cc.shape)/20.0
	cc = apImage.highPassFilter(cc, radius=rad)
	cc = apImage.normRange(cc)
	cc = blackEdges(cc)
	cc = apImage.normRange(cc)
	cc = blackEdges(cc)
	cc = apImage.normRange(cc)
	cc = apImage.lowPassFilter(cc, radius=10.0)

	#find peak
	peakdict = peakfinder.findSubpixelPeak(cc, lpf=0)
	#import pprint
	#pprint.pprint(peak)
	pixpeak = peakdict['subpixel peak']
	if msg is True:
		apDisplay.printMsg("Pixel peak: "+str(pixpeak))
		apImage.arrayToJpegPlusPeak(cc, "guess-cross-ang"+str(abs(angle))+".jpg", pixpeak)

	rawpeak = numpy.array([pixpeak[1], pixpeak[0]]) #swap coord
	shift = numpy.asarray(correlator.wrap_coord(rawpeak, cc.shape))*bin

	if msg is True:
		apDisplay.printMsg("Found xy-shift btw two images"
			+";\n\t SNR= "+str(round(peakdict['snr'],2))
			+";\n\t halftilt= "+str(round(halftiltrad*180/math.pi, 3))
			+";\n\t compressFactor= "+str(round(compressFactor, 3))
			+";\n\t stretchFactor= "+str(round(stretchFactor, 3))
			+";\n\t xFactor= "+str(round(xfactor, 3))
			+";\n\t rawpeak= "+str(numpy.around(rawpeak*bin, 1))
			+";\n\t shift= "+str(numpy.around(shift, 1))
		)

	return shift, xfactor, peakdict['snr']
	def real_fft2d(self, image, *args, **kwargs):
		padshape = numpy.asarray(image.shape)*1
		padimage = apImage.frame_constant(image, padshape, image.mean())
		fft = fftpack.fft2(padimage, *args, **kwargs)
		return fft