Пример #1
0
def getFile(fileID):
    # declare as global to update the original variable.
    global REQUEST_ID
    # generate a new id for each request.
    REQUEST_ID = str(uuid.uuid4())
    accessID = getAccessId()
    mfileID = fileID
    if isAccessIdAuthentic(accessID):
        fileName = dc.translateFileidToFilename(mfileID)
        userFilesDir = dc.getUserFilesDir(accessID)

        print("INFO: FILEDOWNLOAD: Requested File Name: " + str(fileName))
        if fileName != False:
            try:
                md5Checksum = generateMD5(os.path.join(userFilesDir, fileName))
                print(
                    "INFO: FILEDOWNLOAD: File with the given FileID found on server."
                )
                status = "File with the given FileID found on server."
                httpCode = 200
                res = createRequestDetails(fileName, mfileID, md5Checksum,
                                           status, httpCode, REQUEST_ID)
                return send_from_directory(userFilesDir,
                                           filename=fileName,
                                           as_attachment=True)
            except Exception as e:
                print(
                    "ERROR: FILEDOWNLOAD: Error(s) encountered while transferring file."
                )
                print(str(e))
                status = "Error(s) encountered while transferring file."
                httpCode = 500
                res = createRequestDetails("N/A", mfileID, "N/A", status,
                                           httpCode, REQUEST_ID)

        else:
            print(
                "ERROR: FILEDOWNLOAD: File with the given FileID parameter not found"
            )
            status = "File with the given FileID parameter not found"
            httpCode = 404
            res = createRequestDetails("N/A", mfileID, "N/A", status, httpCode,
                                       REQUEST_ID)

    else:
        print("ERROR: FILEDOWNLOAD: Invalid Access-ID, request denied.")
        status = "[ERR] Invalid Access-ID, request denied."
        httpCode = 403
        res = createRequestDetails("N/A", "N/A", "N/A", status, httpCode,
                                   REQUEST_ID)
        res = make_response(res, httpCode)
    return res


############################ END OF SCRIPT ###################################
Пример #2
0
def checkFileStatus(fileID):
    # declare as global to update the original variable.
    global REQUEST_ID
    # generate a new id for each request.
    REQUEST_ID = str(uuid.uuid4())
    accessID = getAccessId()
    if isAccessIdAuthentic(accessID):
        mfileID = fileID

        userWorkspace = os.path.join(WORKSPACE_DIR, accessID)
        userFilesDir = os.path.join(userWorkspace, USER_FILES)

        fileName = dc.translateFileidToFilename(mfileID)
        if fileName != False:
            md5Checksum = generateMD5(os.path.join(userFilesDir, fileName))
            status = "File with the given FileID found on server."
            httpCode = 200
            res = createRequestDetails(fileName, mfileID, md5Checksum, status,
                                       httpCode, REQUEST_ID)
            return res
        else:
            print("File with the given FileID parameter not found")
            status = "File with the given FileID parameter not found"
            httpCode = 404
            res = createRequestDetails("N/A", mfileID, "N/A", status, httpCode,
                                       REQUEST_ID)
            return res

    else:
        print("Invalid Access-ID, request denied.")
        status = "[ERR] Invalid Access-ID, request denied."
        httpCode = 403
        res = createRequestDetails("N/A", "N/A", "N/A", status, httpCode,
                                   REQUEST_ID)
        res = make_response(res, httpCode)
    return res
def trainModel(accessID, workflowID, inputFileID):
    isInitSuccessful()
    REQUEST_ID = str(uuid.uuid4())
    inputFileName = dc.translateFileidToFilename(inputFileID)
    inputFilePath = dc.getArchiveUploadPath((accessID))
    if inputFileName != False:
        print("INFO: HyAPI_ML_INTERNAL: FileName: " + inputFileName)
        inputFile = os.path.join(inputFilePath, inputFileName)
    else:
        print(
            "ERROR: HyAPI_ML_INTERNAL: Input image with the given FileID parameter not found"
        )
        return False

    # Get the path to the user's workspace and the specified workflow:
    # STEP-1: EXTRACT THE INPUT ZIP TO THE TEMP DIRECTORY.
    tempDirectory = MLDC.getUserTF_tmp_dir(accessID, workflowID)
    if extractZip(inputFile, tempDirectory):
        print("INFO: HyAPI_ML_INTERNAL: Inputs extracted to temp directory.")
    else:
        print(
            "ERROR: HyAPI_ML_INTERNAL: Error extracting input .zip file to workflow."
        )
        return False

    #STEP-2: MOVE THE FILES TO THE RELEVANT DIRECTORIES IN THE WORKFLOW STRUCTURE.
    userWorkflow = MLDC.getUserTF_workflow(accessID, workflowID)
    workflow_Dataset = MLDC.getDatasetDirectory(accessID, workflowID)
    workflow_Annotations = MLDC.getAnnotationsDirectory(accessID, workflowID)
    workflow_Training = MLDC.getTrainingDirectory(accessID, workflowID)
    try:
        testData_tmp = os.path.join(tempDirectory,
                                    MLC.USR_INPUT_TEST_IMAGES_DIR)
        testData_final = os.path.join(workflow_Dataset,
                                      MLC.USR_INPUT_TEST_IMAGES_DIR)

        trainData_tmp = os.path.join(tempDirectory,
                                     MLC.USR_INPUT_TRAIN_IMAGES_DIR)
        trainData_final = os.path.join(workflow_Dataset,
                                       MLC.USR_INPUT_TRAIN_IMAGES_DIR)

        labelMap_tmp = os.path.join(tempDirectory,
                                    MLC.USR_INPUT_LABEL_MAP_FILE)
        labelMap_final = os.path.join(workflow_Annotations,
                                      MLC.USR_INPUT_LABEL_MAP_FILE)

        pipeline_tmp = os.path.join(tempDirectory, MLC.USR_INPUT_PIPELINE_FILE)
        pipeline_final = os.path.join(workflow_Training,
                                      MLC.USR_INPUT_PIPELINE_FILE)
        # (source,destination)

        if fh.moveFile(testData_tmp, testData_final) and fh.moveFile(
                trainData_tmp, trainData_final) and fh.moveFile(
                    labelMap_tmp, labelMap_final) and fh.moveFile(
                        pipeline_tmp, pipeline_final):
            print("INFO: HyAPI_ML_INTERNAL:Files moved successfully")
        else:
            print("ERROR: HyAPI_ML_INTERNAL: Error moving files.")
            return False
    except Exception as e:
        print(str(e))
        return False

    #STEP-3-a: GENERATE UNIFIED CSV FILES FOR TEST AND TRAIN DATA.
    train_csv_path = os.path.join(workflow_Annotations,
                                  MLC.USR_OUTPUT_TRAIN_CSV)
    test_csv_path = os.path.join(workflow_Annotations, MLC.USR_OUTPUT_TEST_CSV)
    try:
        xml_to_csv.generateCsvFromXml(trainData_final, train_csv_path)
        xml_to_csv.generateCsvFromXml(testData_final, test_csv_path)
        print(
            "INFO: HyAPI_ML_INTERNAL: Dataset XMLs converted to CSV files successfully."
        )
    except Exception as e:
        print(str(e))
        return False

    #STEP-3-b: GENERATE TF-RECORDS FILES FOR TEST AND TRAIN DATA
    train_records_path = os.path.join(workflow_Annotations,
                                      MLC.USR_OUTPUT_TRAIN_RECORD)
    test_records_path = os.path.join(workflow_Annotations,
                                     MLC.USR_OUTPUT_TEST_RECORD)
    try:
        generate_tfrecord.generateTfRecords(train_records_path,
                                            trainData_final, train_csv_path)
        generate_tfrecord.generateTfRecords(test_records_path, testData_final,
                                            test_csv_path)
        print(
            "INFO: HyAPI_ML_INTERNAL: TF-Records file generated successfully.")
    except Exception as e:
        print(str(e))
        return False

    #STEP-4: START THE TRAINING JOB
    try:
        containerID = DockerInterface.startModelTraining(
            REQUEST_ID, userWorkflow)
        if containerID != False:
            print(
                "INFO: HyAPI_ML_INTERNAL: Training process started, Container ID: "
                + str(containerID))
            status = "Training started."
            if MLDC.updateWorkflow(accessID, workflowID, status, containerID):
                return True
            else:
                print(
                    "ERROR: HyAPI_ML_INTERNAL: Error saving workflow details to db."
                )
                return False
        else:
            print(
                "ERROR: HyAPI_ML_INTERNAL: Error(s) encountered while starting the training job."
            )
            return False
    except Exception as e:
        print(str(e))
        return False
Пример #4
0
def validateCompuMethods():
    # declare as global to update the original variable.
    global REQUEST_ID
    # generate a new id for each request.
    REQUEST_ID = str(uuid.uuid4())
    accessID = getAccessId()
    if isAccessIdAuthentic(accessID):
        #########Get the File IDs from the request parameters#########
        inputFileID = request.json
        userFilesDir = dc.getUserFilesDir(accessID)
        try:
            #Get the File IDs from the request parameters
            xl_FileID = inputFileID["xlFileID"]
        except Exception as e:
            print("ERROR: CM_Validation: " + str(e))
            xl_FileID = "x"
        try:
            a2l_FileID = inputFileID["a2lFileID"]
        except Exception as e:
            print("ERROR: CM_Validation: " + str(e))
            a2l_FileID = "x"
#########File IDs to FileName translation#########
        fileName = dc.translateFileidToFilename(xl_FileID)
        if fileName != False:
            UPLOAD_XSLX_PATH = dc.getExcelUploadPath(accessID)
            xl_file = os.path.join(UPLOAD_XSLX_PATH, fileName)
            print(xl_file)
        else:
            print(
                "ERROR: CM_Validation: Excel file with the given FileID parameter not found"
            )
            status = "Excel file with the given FileID parameter not found"
            httpCode = 404
            res = createRequestDetails("404", xl_FileID, "404", status,
                                       httpCode, REQUEST_ID)
            return res

        fileName = dc.translateFileidToFilename(a2l_FileID)
        if fileName != False:
            UPLOAD_A2L_PATH = dc.getA2lUploadPath(accessID)
            a2l_file = os.path.join(UPLOAD_A2L_PATH, fileName)
            print(a2l_file)
        else:
            print(
                "ERROR: CM_Validation: a2l file with the given FileID parameter not found"
            )
            status = "a2l file with the given FileID parameter not found"
            httpCode = 404
            res = createRequestDetails("404", a2l_FileID, "404", status,
                                       httpCode, REQUEST_ID)
            return res
        OUT_DIR = CMConst.OUTPUT_DIR
        # Call the service.
        tool = CMConst.CLI_INTERFACE
        PARAMS = tool + " " + a2l_file + " " + xl_file + " " + OUT_DIR + " " + OUT_DIR
        #cmd = PYTHON_PATH + " " + tool + " " + PARAMS

        try:
            #subprocess.Popen(cmd)
            subprocess.call([tool, a2l_file, xl_file, OUT_DIR, OUT_DIR])
        except Exception as e:
            print("ERROR: CM_Validation: " + str(e))
            status = "Error(s) encountered in executing the service."
            httpCode = 500
            res = createRequestDetails("404", "404", "404", status, httpCode,
                                       REQUEST_ID)
            return res

        fileName, md5chkSum = postProcessing(userFilesDir)
        if fileName != False:
            print("INFO: CM_Validation: Service executed successfully")
            status = "Service executed successfully."
            httpCode = 201
            Generated_fileID = str(fileNameToHash(REQUEST_ID + getTimeStamp()))
            res = createRequestDetails(fileName, Generated_fileID, md5chkSum,
                                       status, httpCode, REQUEST_ID)
            if createFileDetails(Generated_fileID, fileName, accessID):
                res = make_response(res, httpCode)
                return res
            else:
                print("ERROR: CM_Validation: Error Saving results to server")
                status = "[ERR] Error saving file to disk."
                httpCode = 500
                res["Status"] = status
                res["HttpResponse"] = httpCode
                res = make_response(res, httpCode)
                #abort(500, "Error saving file to disk")
                return res
        else:
            status = "Error(s) encountered in post processing the results."
            httpCode = 500
            res = createRequestDetails("404", "404", "404", status, httpCode,
                                       REQUEST_ID)
            return res
    else:
        print("ERROR: CM_Validation: Invalid Access-ID, request denied.")
        status = "[ERR] Invalid Access-ID, request denied."
        httpCode = 403
        res = createRequestDetails("xxx", "xxx", "xxx", status, httpCode,
                                   REQUEST_ID)
        res = make_response(res, httpCode)
    return res
def generateUmlDiagram():
    # declare as global to update the original variable.
    global REQUEST_ID
    # generate a new id for each request.
    REQUEST_ID = str(uuid.uuid4())
    accessID = getAccessId()
    if isAccessIdAuthentic(accessID):
        #Get the File IDs from the request parameters
        inputFileID = request.json
        #This is the folder in workspace where all the files generated by services shoudl be stored.
        userFilesDir = dc.getUserFilesDir(accessID)
        sourceFilePath = dc.getTextUploadPath(accessID)
        try:
            inputFile_ID = inputFileID["InputFileID"]
        except Exception as e:
            print("ERROR: GEN_UML: " + str(e))
            inputFile_ID = "x"
        print("INFO_GEN_UML: " + inputFile_ID)
        # File IDs to FileName translation
        sourceFileName = dc.translateFileidToFilename(inputFile_ID)
        print("INFO_GEN_UML: FileName on Server: " + sourceFileName)
        if sourceFileName != False:
            sourcefile = os.path.join(sourceFilePath, sourceFileName)
        else:
            print(
                "ERROR: GEN_UML: Configuration(source code) with the given FileID parameter not found"
            )
            status = "Configuration(source code) with the given FileID parameter not found"
            httpCode = 404
            res = createRequestDetails("N/A", inputFile_ID, "N/A", status,
                                       httpCode, REQUEST_ID)
            return res

        # Call the service.
        tool = TOOL_PATH
        # the cmd script takes in two parameters Input .TXT file and the path to
        # the output directory which in this case is the "USER FILES DIRECTORY"
        #PARAMS = sourcefile + " " + OUTPUT_DIR
        #cmd = tool + " " + PARAMS
        try:
            subprocess.call(
                ['java', '-jar', tool, sourcefile, "-o", OUTPUT_DIR])
        except Exception as e:
            print("ERROR: GEN_UML: " + str(e))
            status = "Error(s) encountered in executing the service."
            httpCode = 500
            res = createRequestDetails("N/A", inputFile_ID, "N/A", status,
                                       httpCode, REQUEST_ID)
            return res

        #processing on generate file
        #Plant uml names the generated file the same as input source file.
        fileName, md5chkSum = postProcessing(sourceFileName, userFilesDir)
        if fileName != False:
            print("INFO: GEN_UML: Service executed successfully.")
            status = "UML diagram generated successfully."
            Generated_fileID = str(fileNameToHash(REQUEST_ID + getTimeStamp()))
            httpCode = 201
            res = createRequestDetails(fileName, Generated_fileID, md5chkSum,
                                       status, httpCode, REQUEST_ID)
            if createFileDetails(Generated_fileID, fileName, accessID):
                res = make_response(res, httpCode)
                return res
            else:
                print("ERROR: GEN_UML: Error Saving file to server")
                status = "[ERR] Error saving file to disk."
                httpCode = 500
                res["Status"] = status
                res["HttpResponse"] = httpCode
                res = make_response(res, httpCode)
                #abort(500, "Error saving file to disk")
                return res
        else:
            print(
                "ERROR: GEN_UML: Error(s) encountered in post processing the results."
            )
            status = "Error(s) encountered in post processing the results."
            httpCode = 500
            res = createRequestDetails(fileName, inputFile_ID, "N/A", status,
                                       httpCode, REQUEST_ID)
            return res
    else:
        print("ERROR: GEN_UML: Invalid Access-ID, request denied.")
        status = "[ERR] Invalid Access-ID, request denied."
        httpCode = 403
        res = createRequestDetails("N/A", "N/A", "N/A", status, httpCode,
                                   REQUEST_ID)
        res = make_response(res, httpCode)
    return res
Пример #6
0
def trainModel(workflowID, inputFileID):
    # declare as global to update the original variable.
    global REQUEST_ID
    # generate a new id for each request.
    REQUEST_ID = str(uuid.uuid4())
    accessID = getAccessId()
    if fh.isAccessIdAuthentic(accessID):
        InputFileID = inputFileID
        inputFilePath = dc.getArchiveUploadPath((accessID))
        #######################################################
        if workflowID != "" and InputFileID != "":

            print("INFO: HyAPI_ML: " + InputFileID)
            # File IDs to FileName translation
            inputFileName = dc.translateFileidToFilename(InputFileID)
            if inputFileName != False:
                print("INFO: HyAPI_ML: FileName on Server: " + inputFileName)
                inputFile = os.path.join(inputFilePath, inputFileName)
            else:
                print(
                    "ERROR: HyAPI_ML: Input image with the given FileID parameter not found"
                )
                status = "Input image with the given FileID parameter not found"
                httpCode = MLC.HTTP_NOT_FOUND
                res = createReqDetails_training(workflowID, "NA", "NI",
                                                REQUEST_ID, status, httpCode)
                return res

            # Get the path to the user's workspace and the specified workflow:
            # STEP-1: EXTRACT THE INPUT ZIP TO THE TEMP DIRECTORY.
            tempDirectory = MLDC.getUserTF_tmp_dir(accessID, workflowID)
            if extractZip(inputFile, tempDirectory):
                print("INFO: HyAPI_ML: Inputs extracted to temp directory.")
            else:
                status = "Error extracting input .zip file to workflow."
                print("ERROR: HyAPI_ML: " + status)
                httpCode = MLC.HTTP_SERVER_ERROR
                res = createReqDetails_training(workflowID, "NA", "NI",
                                                REQUEST_ID, status, httpCode)
                return make_response(res, httpCode)

            #STEP-2: MOVE THE FILES TO THE RELEVANT DIRECTORIES IN THE WORKFLOW STRUCTURE.
            userWorkflow = MLDC.getUserTF_workflow(accessID, workflowID)
            workflow_Dataset = MLDC.getDatasetDirectory(accessID, workflowID)
            workflow_Annotations = MLDC.getAnnotationsDirectory(
                accessID, workflowID)
            workflow_Training = MLDC.getTrainingDirectory(accessID, workflowID)
            try:
                testData_tmp = os.path.join(tempDirectory,
                                            MLC.USR_INPUT_TEST_IMAGES_DIR)
                testData_final = os.path.join(workflow_Dataset,
                                              MLC.USR_INPUT_TEST_IMAGES_DIR)

                trainData_tmp = os.path.join(tempDirectory,
                                             MLC.USR_INPUT_TRAIN_IMAGES_DIR)
                trainData_final = os.path.join(workflow_Dataset,
                                               MLC.USR_INPUT_TRAIN_IMAGES_DIR)

                labelMap_tmp = os.path.join(tempDirectory,
                                            MLC.USR_INPUT_LABEL_MAP_FILE)
                labelMap_final = os.path.join(workflow_Annotations,
                                              MLC.USR_INPUT_LABEL_MAP_FILE)

                pipeline_tmp = os.path.join(tempDirectory,
                                            MLC.USR_INPUT_PIPELINE_FILE)
                pipeline_final = os.path.join(workflow_Training,
                                              MLC.USR_INPUT_PIPELINE_FILE)
                # (source,destination)

                if fh.moveFile(testData_tmp, testData_final) and fh.moveFile(
                        trainData_tmp, trainData_final) and fh.moveFile(
                            labelMap_tmp, labelMap_final) and fh.moveFile(
                                pipeline_tmp, pipeline_final):
                    print("INFO: HyAPI_ML:Files moved successfully")
                else:
                    print("INFO: HyAPI_ML: Error moving files.")
                    status = "Error(s) while populating the workflow with new files"
                    httpCode = MLC.HTTP_SERVER_ERROR
                    res = createReqDetails_training(workflowID, "NA", "NI",
                                                    REQUEST_ID, status,
                                                    httpCode)
                    return make_response(res, httpCode)
            except Exception as e:
                print(str(e))
                status = "Error(s) while populating the workflow with new files"
                httpCode = MLC.HTTP_SERVER_ERROR
                res = createReqDetails_training(workflowID, "NA", "NI",
                                                REQUEST_ID, status, httpCode)
                return make_response(res, httpCode)

            #STEP-3-a: GENERATE UNIFIED CSV FILES FOR TEST AND TRAIN DATA.
            train_csv_path = os.path.join(workflow_Annotations,
                                          MLC.USR_OUTPUT_TRAIN_CSV)
            test_csv_path = os.path.join(workflow_Annotations,
                                         MLC.USR_OUTPUT_TEST_CSV)
            try:
                xml_to_csv.generateCsvFromXml(trainData_final, train_csv_path)
                xml_to_csv.generateCsvFromXml(testData_final, test_csv_path)
                print("Dataset XMLs converted to CSV files successfully.")
            except Exception as e:
                print(str(e))
                status = "Error(s) while generating annotaion CSV files from the dataset XMLs."
                httpCode = MLC.HTTP_SERVER_ERROR
                res = createReqDetails_training(workflowID, "NA", "NI",
                                                REQUEST_ID, status, httpCode)
                return make_response(res, httpCode)

            #STEP-3-b: GENERATE TF-RECORDS FILES FOR TEST AND TRAIN DATA
            train_records_path = os.path.join(workflow_Annotations,
                                              MLC.USR_OUTPUT_TRAIN_RECORD)
            test_records_path = os.path.join(workflow_Annotations,
                                             MLC.USR_OUTPUT_TEST_RECORD)
            try:
                generate_tfrecord.generateTfRecords(train_records_path,
                                                    trainData_final,
                                                    train_csv_path)
                generate_tfrecord.generateTfRecords(test_records_path,
                                                    testData_final,
                                                    test_csv_path)
                print("TF-Records file generated successfully.")
            except Exception as e:
                print(str(e))
                status = "Error(s) occured while generating tf-records file."
                httpCode = MLC.HTTP_SERVER_ERROR
                res = createReqDetails_training(workflowID, "NA", "NI",
                                                REQUEST_ID, status, httpCode)
                return make_response(res, httpCode)

            #STEP-4: START THE TRAINING JOB
            try:
                containerID = DockerInterface.startModelTraining(
                    REQUEST_ID, userWorkflow)
                if containerID != False:
                    print("Training process started, Container ID: " +
                          str(containerID))
                    status = "Training process started, Model will be available for export once this process finishes."
                    httpCode = MLC.HTTP_CREATED
                    res = createReqDetails_training(workflowID, containerID,
                                                    "NI", REQUEST_ID, status,
                                                    httpCode)
                    if MLDC.updateWorkflow(accessID, workflowID, status,
                                           containerID):
                        return make_response(res, httpCode)
                    else:
                        status = "Error saving workflow details to db."
                        print("ERROR: HyAPI_ML: " + status)
                        httpCode = MLC.HTTP_SERVER_ERROR
                        res = createReqDetails_training(
                            workflowID, containerID, "NI", REQUEST_ID, status,
                            httpCode)
                        return make_response(res, httpCode)
                else:
                    status = "Error(s) encountered while starting the training job."
                    print(status)
                    httpCode = MLC.HTTP_SERVER_ERROR
                    res = createReqDetails_training(workflowID, "NA", "NI",
                                                    REQUEST_ID, status,
                                                    httpCode)
                    return make_response(res, httpCode)
            except Exception as e:
                print(str(e))
                status = "Error(s) encountered while starting the training job."
                httpCode = MLC.HTTP_SERVER_ERROR
                res = createReqDetails_training(workflowID, "NA", "NI",
                                                REQUEST_ID, status, httpCode)
                return make_response(res, httpCode)
            #test = DockerInterface.checkContainerStatus(containerID)
            #print(str(test))
        #If one of the required parameters in the request are missing.
        else:
            status = "WorkflowName & BaseModel values are required in input json. One or both are missing in the request."
            print("ERROR: HyAPI_ML: " + status)
            httpCode = MLC.HTTP_BAD_REQUEST
            res = createReqDetails_newWorkflow("N/A", "N/A", "N/A", REQUEST_ID,
                                               status, httpCode)
            return make_response(res, httpCode)
Пример #7
0
def detectStopSign():
    # declare as global to update the original variable.
    global REQUEST_ID
    # generate a new id for each request.
    REQUEST_ID = str(uuid.uuid4())
    accessID = getAccessId()
    if fh.isAccessIdAuthentic(accessID):
        #Get the File IDs from the request parameters
        inputFileID = request.json
        #This is the folder in workspace where all the files generated by services shoudl be stored.
        userFilesDir = dc.getUserFilesDir(accessID)
        inputFilePath = dc.getImageUploadPath((accessID))
        try:
            inputFile_ID = inputFileID["InputFileID"]
        except Exception as e:
            print("ERROR: HyAPI_ML: " + str(e))
            inputFile_ID = "x"
        print("INFO: HyAPI_ML: " + inputFile_ID)
        # File IDs to FileName translation
        inputFileName = dc.translateFileidToFilename(inputFile_ID)
        if inputFileName != False:
            print("INFO: HyAPI_ML FileName on Server: " + inputFileName)
            inputFile = os.path.join(inputFilePath, inputFileName)
        else:
            print(
                "ERROR: HyAPI_ML: Input image with the given FileID parameter not found"
            )
            status = "Input image with the given FileID parameter not found"
            httpCode = MLC.HTTP_NOT_FOUND
            res = createRequestDetails(inputFile_ID, "N/A", status, httpCode,
                                       REQUEST_ID)
            return res

        #procStatus holds the filename
        procStatus = ml_od.detectStopSign(inputFile, FGB, LMB, userFilesDir)
        if procStatus != False:
            outputFileID = str(fh.generateHash(REQUEST_ID + fh.getTimeStamp()))
            status = "Object detection process successful"
            httpCode = MLC.HTTP_CREATED
            res = createRequestDetails(inputFileName, outputFileID, status,
                                       httpCode, REQUEST_ID)
            if dc.createFileDetails(outputFileID, procStatus, accessID):
                print("INFO: HyAPI_ML: Object detection process successful")
                res = make_response(res, httpCode)
                return res
            else:  #Internal server error
                print("ERROR: HyAPI_ML: Error Saving file to server")
                status = "[ERR] Error saving file to disk."
                httpCode = MLC.HTTP_SERVER_ERROR
                res["Status"] = status
                res["HttpResponse"] = httpCode
                res = make_response(res, httpCode)
                #abort(500, "Error saving file to disk")
                return res
    else:
        print("ERROR: HyAPI_ML: Invalid Access-ID, request denied.")
        status = "[ERR] Invalid Access-ID, request denied."
        httpCode = MLC.HTTP_FORBIDDEN
        res = createRequestDetails("N/A", "N/A", status, httpCode, REQUEST_ID)
        res = make_response(res, httpCode)
    return res