Пример #1
0
 def add_result(self, ranking, sample):
     predicted = RecommendationResult(dict.fromkeys(ranking, 1))
     real = RecommendationResult(sample)
     evaluation = Evaluation(predicted, real, self.repository_size)
     self.precision.append(evaluation.run(Precision()))
     self.recall.append(evaluation.run(Recall()))
     self.fpr.append(evaluation.run(FPR()))
     self.f05.append(evaluation.run(F_score(0.5)))
     self.mcc.append(evaluation.run(MCC()))
 def add_result(self, ranking, sample):
     for size in self.accuracy.keys():
         predicted = RecommendationResult(dict.fromkeys(ranking[:size], 1))
         real = RecommendationResult(sample)
         evaluation = Evaluation(predicted, real, self.repository_size)
         self.accuracy[size].append(evaluation.run(Accuracy()))
         self.precision[size].append(evaluation.run(Precision()))
         self.recall[size].append(evaluation.run(Recall()))
         self.f1[size].append(evaluation.run(F_score(1)))
         self.f05[size].append(evaluation.run(F_score(0.5)))
 def add_result(self, ranking, sample):
     for size in self.thresholds:
         recommendation = ranking[:size]
         self.recommended[size] = self.recommended[
             size].union(recommendation)
         predicted = RecommendationResult(dict.fromkeys(recommendation, 1))
         real = RecommendationResult(sample)
         evaluation = Evaluation(predicted, real, self.repository_size)
         self.precision[size].append(evaluation.run(Precision()))
         self.recall[size].append(evaluation.run(Recall()))
         self.f05[size].append(evaluation.run(F_score(0.5)))
         self.fpr[size].append(evaluation.run(FPR()))
Пример #4
0
                        item_score[pkg] = user.item_score[pkg]
                    sample = {}
                    sample_size = int(profile_len * 0.9)
                    for i in range(sample_size):
                        key = random.choice(item_score.keys())
                        sample[key] = item_score.pop(key)
                    iteration_user = User(item_score)
                    recommendation = rec.get_recommendation(
                        iteration_user, repo_size)
                    if hasattr(recommendation, "ranking"):
                        ranking = recommendation.ranking
                        real = RecommendationResult(sample)
                        predicted_10 = RecommendationResult(
                            dict.fromkeys(ranking[:10], 1))
                        evaluation = Evaluation(predicted_10, real, repo_size)
                        p_10.append(evaluation.run(Precision()))
                        predicted_100 = RecommendationResult(
                            dict.fromkeys(ranking[:100], 1))
                        evaluation = Evaluation(predicted_100, real, repo_size)
                        f05_100.append(evaluation.run(F_score(0.5)))
                        c_10[size] = c_10[size].union(
                            recommendation.ranking[:10])
                        c_100[size] = c_100[size].union(
                            recommendation.ranking[:100])
                # save summary
                if p_10:
                    p_10_summary[size].append(numpy.mean(p_10))
                if f05_100:
                    f05_100_summary[size].append(numpy.mean(f05_100))

                with open(log_file + "-%s%.3d" % (option_str, size), 'a') as f:
Пример #5
0
 def iterate(self, params, rep, n):
     if params['name'].startswith("content"):
         item_score = dict.fromkeys(self.user.pkg_profile, 1)
         # Prepare partition
         sample = {}
         for i in range(self.sample_size):
             key = random.choice(item_score.keys())
             sample[key] = item_score.pop(key)
         # Get full recommendation
         user = User(item_score)
         recommendation = self.rec.get_recommendation(user, self.repo_size)
         # Write recall log
         recall_file = "results/content/recall/%s-%s-%.2f-%d" % \
                       (params['strategy'], params[
                        'weight'], params['sample'], n)
         output = open(recall_file, 'w')
         output.write("# weight=%s\n" % params['weight'])
         output.write("# strategy=%s\n" % params['strategy'])
         output.write("# sample=%f\n" % params['sample'])
         output.write("\n%d %d %d\n" %
                      (self.repo_size, len(item_score), self.sample_size))
         notfound = []
         ranks = []
         for pkg in sample.keys():
             if pkg in recommendation.ranking:
                 ranks.append(recommendation.ranking.index(pkg))
             else:
                 notfound.append(pkg)
         for r in sorted(ranks):
             output.write(str(r) + "\n")
         if notfound:
             output.write("Out of recommendation:\n")
             for pkg in notfound:
                 output.write(pkg + "\n")
         output.close()
         # Plot metrics summary
         accuracy = []
         precision = []
         recall = []
         f1 = []
         g = Gnuplot.Gnuplot()
         g('set style data lines')
         g.xlabel('Recommendation size')
         for size in range(1, len(recommendation.ranking) + 1, 100):
             predicted = RecommendationResult(
                 dict.fromkeys(recommendation.ranking[:size], 1))
             real = RecommendationResult(sample)
             evaluation = Evaluation(predicted, real, self.repo_size)
             accuracy.append([size, evaluation.run(Accuracy())])
             precision.append([size, evaluation.run(Precision())])
             recall.append([size, evaluation.run(Recall())])
             f1.append([size, evaluation.run(F1())])
         g.plot(Gnuplot.Data(accuracy, title="Accuracy"),
                Gnuplot.Data(precision, title="Precision"),
                Gnuplot.Data(recall, title="Recall"),
                Gnuplot.Data(f1, title="F1"))
         g.hardcopy(recall_file + "-plot.ps", enhanced=1, color=1)
         # Iteration log
         result = {'iteration': n,
                   'weight': params['weight'],
                   'strategy': params['strategy'],
                   'accuracy': accuracy[20],
                   'precision': precision[20],
                   'recall:': recall[20],
                   'f1': f1[20]}
         return result