def add_result(self, ranking, sample): predicted = RecommendationResult(dict.fromkeys(ranking, 1)) real = RecommendationResult(sample) evaluation = Evaluation(predicted, real, self.repository_size) self.precision.append(evaluation.run(Precision())) self.recall.append(evaluation.run(Recall())) self.fpr.append(evaluation.run(FPR())) self.f05.append(evaluation.run(F_score(0.5))) self.mcc.append(evaluation.run(MCC()))
def add_result(self, ranking, sample): for size in self.accuracy.keys(): predicted = RecommendationResult(dict.fromkeys(ranking[:size], 1)) real = RecommendationResult(sample) evaluation = Evaluation(predicted, real, self.repository_size) self.accuracy[size].append(evaluation.run(Accuracy())) self.precision[size].append(evaluation.run(Precision())) self.recall[size].append(evaluation.run(Recall())) self.f1[size].append(evaluation.run(F_score(1))) self.f05[size].append(evaluation.run(F_score(0.5)))
def add_result(self, ranking, sample): for size in self.thresholds: recommendation = ranking[:size] self.recommended[size] = self.recommended[ size].union(recommendation) predicted = RecommendationResult(dict.fromkeys(recommendation, 1)) real = RecommendationResult(sample) evaluation = Evaluation(predicted, real, self.repository_size) self.precision[size].append(evaluation.run(Precision())) self.recall[size].append(evaluation.run(Recall())) self.f05[size].append(evaluation.run(F_score(0.5))) self.fpr[size].append(evaluation.run(FPR()))
item_score[pkg] = user.item_score[pkg] sample = {} sample_size = int(profile_len * 0.9) for i in range(sample_size): key = random.choice(item_score.keys()) sample[key] = item_score.pop(key) iteration_user = User(item_score) recommendation = rec.get_recommendation( iteration_user, repo_size) if hasattr(recommendation, "ranking"): ranking = recommendation.ranking real = RecommendationResult(sample) predicted_10 = RecommendationResult( dict.fromkeys(ranking[:10], 1)) evaluation = Evaluation(predicted_10, real, repo_size) p_10.append(evaluation.run(Precision())) predicted_100 = RecommendationResult( dict.fromkeys(ranking[:100], 1)) evaluation = Evaluation(predicted_100, real, repo_size) f05_100.append(evaluation.run(F_score(0.5))) c_10[size] = c_10[size].union( recommendation.ranking[:10]) c_100[size] = c_100[size].union( recommendation.ranking[:100]) # save summary if p_10: p_10_summary[size].append(numpy.mean(p_10)) if f05_100: f05_100_summary[size].append(numpy.mean(f05_100)) with open(log_file + "-%s%.3d" % (option_str, size), 'a') as f:
def iterate(self, params, rep, n): if params['name'].startswith("content"): item_score = dict.fromkeys(self.user.pkg_profile, 1) # Prepare partition sample = {} for i in range(self.sample_size): key = random.choice(item_score.keys()) sample[key] = item_score.pop(key) # Get full recommendation user = User(item_score) recommendation = self.rec.get_recommendation(user, self.repo_size) # Write recall log recall_file = "results/content/recall/%s-%s-%.2f-%d" % \ (params['strategy'], params[ 'weight'], params['sample'], n) output = open(recall_file, 'w') output.write("# weight=%s\n" % params['weight']) output.write("# strategy=%s\n" % params['strategy']) output.write("# sample=%f\n" % params['sample']) output.write("\n%d %d %d\n" % (self.repo_size, len(item_score), self.sample_size)) notfound = [] ranks = [] for pkg in sample.keys(): if pkg in recommendation.ranking: ranks.append(recommendation.ranking.index(pkg)) else: notfound.append(pkg) for r in sorted(ranks): output.write(str(r) + "\n") if notfound: output.write("Out of recommendation:\n") for pkg in notfound: output.write(pkg + "\n") output.close() # Plot metrics summary accuracy = [] precision = [] recall = [] f1 = [] g = Gnuplot.Gnuplot() g('set style data lines') g.xlabel('Recommendation size') for size in range(1, len(recommendation.ranking) + 1, 100): predicted = RecommendationResult( dict.fromkeys(recommendation.ranking[:size], 1)) real = RecommendationResult(sample) evaluation = Evaluation(predicted, real, self.repo_size) accuracy.append([size, evaluation.run(Accuracy())]) precision.append([size, evaluation.run(Precision())]) recall.append([size, evaluation.run(Recall())]) f1.append([size, evaluation.run(F1())]) g.plot(Gnuplot.Data(accuracy, title="Accuracy"), Gnuplot.Data(precision, title="Precision"), Gnuplot.Data(recall, title="Recall"), Gnuplot.Data(f1, title="F1")) g.hardcopy(recall_file + "-plot.ps", enhanced=1, color=1) # Iteration log result = {'iteration': n, 'weight': params['weight'], 'strategy': params['strategy'], 'accuracy': accuracy[20], 'precision': precision[20], 'recall:': recall[20], 'f1': f1[20]} return result