def run_train(): print "Training machine learning" try: MachineLearning.train(MachineLearningBVA) MachineLearning.train(MachineLearningBOW) except IOError: return PERMISSION_DENIED except MachineLearningTrainError: return ERROR_INIT_TRAIN return SUCCESS
def train_machine_learning(): try: print "Training machine learning" MachineLearning.train(MachineLearningBVA) MachineLearning.train(MachineLearningBOW) os.system("cp {} {}".format( MachineLearningData.PKGS_CLASSIFICATIONS, LOG_PATH)) except xapian.DatabaseOpeningError: print "\n\nPlease check if you prepared the AppRecommender data" print "Try to run the following commands:" print " $ cd .." print " $ apprec --init\n" exit(1)
def run(): load_options = LoadOptions() load_options.load() if call_initialize(load_options.options): print "Initializing AppRecommender" initialize = Initialize() initialize.prepare_data() return SUCCESS elif call_training(load_options.options): print "Training machine learning" MachineLearning.train(MachineLearningBVA) MachineLearning.train(MachineLearningBOW) return SUCCESS else: return run_apprecommender(load_options.options)
def run(): load_options = LoadOptions() load_options.load() options = load_options.options if check_for_flag(options, '-i', '--init'): print "Initializing AppRecommender" initialize = Initialize() initialize.prepare_data() return SUCCESS elif check_for_flag(options, '-t', '--train'): print "Training machine learning" MachineLearning.train(MachineLearningBVA) MachineLearning.train(MachineLearningBOW) return SUCCESS elif check_for_flag(options, '-c', '--contribute'): collect_user_data.main() else: return run_apprecommender(load_options.options)
def main(): logging.getLogger().disabled = True # print "Checking dependencies" # unistalled_dependencies = check_dependencies() # if len(unistalled_dependencies) > 0: # print 'These packages need to be installed:', unistalled_dependencies # return initial_prints() if not user_accept_collect_data(): exit(1) create_log_folder() MachineLearning.train(MachineLearningBVA) MachineLearning.train(MachineLearningBOW) os.system("cp {} {}".format( MachineLearningData.PKGS_CLASSIFICATIONS, LOG_PATH)) collect_data = Process(target=collect_user_data) cross_validation_mlbva = Process( target=ml_cross_validation, args=(LOG_PATH + '/', 'mlbva')) cross_validation_mlbow = Process( target=ml_cross_validation, args=(LOG_PATH + '/', 'mlbow')) collect_data.start() cross_validation_mlbva.start() cross_validation_mlbow.start() os.system('clear') print "Preparing recommendations..." collect_user_preferences() print "\n\nWaiting for data collection complete" collect_data.join() cross_validation_mlbva.join() cross_validation_mlbow.join() print "\n\nFinished: All files and recommendations were collected" print "Collect data folder: {0}".format(LOG_PATH)