Пример #1
0
def full_conv(x, K, is_training, wd):
    with tf.variable_scope('conv1x1'):
        current = common.batchNormalization(x, is_training=is_training)
        current = tf.nn.relu(current)
        current = common.spatialConvolution(current, 1, 1, 4 * K, wd=wd)
    with tf.variable_scope('conv3x3'):
        current = common.batchNormalization(current, is_training=is_training)
        current = tf.nn.relu(current)
        current = common.spatialConvolution(current, 3, 1, K, wd=wd)
    return current
Пример #2
0
def block(x, spec, wd, is_training):
  with tf.variable_scope('conv1'):
    nin = common.spatialConvolution(x, spec[0], spec[1], spec[2], wd= wd)
    nin = common.batchNormalization(nin, is_training= is_training)
    nin = tf.nn.relu(nin)
  with tf.variable_scope('conv2'):
    nin = common.spatialConvolution(nin, 1, 1, spec[2], wd= wd)
    nin = common.batchNormalization(nin, is_training= is_training)
    nin = tf.nn.relu(nin)
  with tf.variable_scope('conv3'):
    nin = common.spatialConvolution(nin, 1, 1, spec[2], wd= wd)
    nin = common.batchNormalization(nin, is_training= is_training)
    nin = tf.nn.relu(nin)
  return nin
Пример #3
0
def inference(x, num_output, wd, dropout_rate, is_training, transfer_mode= False):
    
    with tf.variable_scope('conv1'):
      network = common.spatialConvolution(x, 11, 4, 64, wd= wd)
      network = common.batchNormalization(network, is_training= is_training)
      network = tf.nn.relu (network)
      #common.activation_summary(network)
    network = common.maxPool(network, 3, 2)
    with tf.variable_scope('conv2'):
      network = common.spatialConvolution(network, 5, 1, 192, wd= wd)
      network = common.batchNormalization(network, is_training= is_training)
      network = tf.nn.relu(network)
      #common.activation_summary(network)
    network = common.maxPool(network, 3, 2)
    with tf.variable_scope('conv3'):
      network = common.spatialConvolution(network, 3, 1, 384, wd= wd)
      network = common.batchNormalization(network, is_training= is_training)
      network = tf.nn.relu(network)
      #common.activation_summary(network)
    with tf.variable_scope('conv4'):
      network = common.spatialConvolution(network, 3, 1, 256, wd= wd)
      network = common.batchNormalization(network, is_training= is_training)
      network = tf.nn.relu(network)
    with tf.variable_scope('conv5'):
      network = common.spatialConvolution(network, 3, 1, 256, wd= wd)
      network = common.batchNormalization(network, is_training= is_training)
      network = tf.nn.relu(network)
    network = common.maxPool(network, 3, 2)
    network = common.flatten(network)
    with tf.variable_scope('fc1'): 
      network = tf.nn.dropout(network, dropout_rate)
      network = common.fullyConnected(network, 4096, wd= wd)
      network = common.batchNormalization(network, is_training= is_training)
      network = tf.nn.relu(network)
    with tf.variable_scope('fc2'):
      network = tf.nn.dropout(network, dropout_rate)
      network = common.fullyConnected(network, 4096, wd= wd)
      network = common.batchNormalization(network, is_training= is_training)
      network = tf.nn.relu(network)
    if not transfer_mode:
      with tf.variable_scope('output'):
        network = common.fullyConnected(network, num_output, wd= wd)
    else:
      with tf.variable_scope('transfer_output'):
        network = common.fullyConnected(network, num_output, wd= wd)

    return network
Пример #4
0
def transition(x, K, wd, is_training):
    with tf.variable_scope('conv'):
        current = common.batchNormalization(x, is_training=is_training)
        current = tf.nn.relu(current)
        shape = current.get_shape().as_list()
        dim = math.floor(shape[3] * 0.5)
        current = common.spatialConvolution(current, 1, 1, dim, wd=wd)
        current = common.avgPool(current, 2, 2)
    return current
Пример #5
0
def inception(x, conv1_size, conv3_size, conv5_size, pool1_size, wd,
              is_training):
    with tf.variable_scope("conv_1"):
        conv1 = common.spatialConvolution(x, 1, 1, conv1_size, wd=wd)
        conv1 = common.batchNormalization(conv1, is_training=is_training)
        conv1 = tf.nn.relu(conv1)
    with tf.variable_scope("conv_3_1"):
        conv3 = common.spatialConvolution(x, 1, 1, conv3_size[0], wd=wd)
        conv3 = common.batchNormalization(conv3, is_training=is_training)
        conv3 = tf.nn.relu(conv3)
    with tf.variable_scope("conv_3_2"):
        conv3 = common.spatialConvolution(conv3, 3, 1, conv3_size[1], wd=wd)
        conv3 = common.batchNormalization(conv3, is_training=is_training)
        conv3 = tf.nn.relu(conv3)
    with tf.variable_scope("conv_5_1"):
        conv5 = common.spatialConvolution(x, 1, 1, conv5_size[0], wd=wd)
        conv5 = common.batchNormalization(conv5, is_training=is_training)
        conv5 = tf.nn.relu(conv5)
    with tf.variable_scope("conv_5_2"):
        conv5 = common.spatialConvolution(conv5, 5, 1, conv5_size[1], wd=wd)
        conv5 = common.batchNormalization(conv5, is_training=is_training)
        conv5 = tf.nn.relu(conv5)
    with tf.variable_scope("pool_1"):
        pool1 = common.maxPool(x, 3, 1)
        pool1 = common.spatialConvolution(pool1, 1, 1, pool1_size, wd=wd)
        pool1 = common.batchNormalization(pool1, is_training=is_training)
        pool1 = tf.nn.relu(pool1)
    return tf.concat([conv1, conv3, conv5, pool1], 3)
Пример #6
0
def inference(x, num_output, wd, dropout_rate, is_training, transfer_mode= False, model_type= 'A'):
   # Create tables describing VGG configurations A, B, D, E
   if model_type == 'A':
      config = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
   elif model_type == 'B':
      config = [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
   elif model_type == 'D':
      config = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']
   elif model_type == 'E':
      config = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M']
   else:
      print('Unknown model type: ' + model_type + ' | Please specify a modelType A or B or D or E')
   
   network= x

   for k,v in enumerate(config):
     if v == 'M':
       network= common.maxPool(network, 2, 2)
     else:  
       with tf.variable_scope('conv'+str(k)):
         network = common.spatialConvolution(network, 3, 1, v, wd= wd)
         network = tf.nn.relu(network)

   network= common.flatten(network)

   with tf.variable_scope('fc1'): 
     network = common.fullyConnected(network, 4096, wd= wd)
     network = tf.nn.relu(network)
     network = common.batchNormalization(network, is_training= is_training)
     network = tf.nn.dropout(network, dropout_rate)
   with tf.variable_scope('fc2'):
     network = common.fullyConnected(network, 4096, wd= wd)
     network = tf.nn.relu(network)
     network = common.batchNormalization(network, is_training= is_training)
     network = tf.nn.dropout(network, dropout_rate)
   if not transfer_mode:
     with tf.variable_scope('output'):
       network = common.fullyConnected(network, num_output, wd= wd)
   else:
     with tf.variable_scope('transfer_output'):
       network = common.fullyConnected(network, num_output, wd= wd)

   return network
Пример #7
0
def getModel(x, num_output, K, stages, wd, is_training, transfer_mode=False):
    with tf.variable_scope('conv1'):
        x = common.spatialConvolution(x, 7, 2, 2 * K, wd=wd)
        x = common.batchNormalization(x, is_training=is_training)
        x = tf.nn.relu(x)
        x = common.maxPool(x, 3, 2)

    with tf.variable_scope('block1'):
        x = block(x, stages[0], K, is_training=is_training, wd=wd)

    with tf.variable_scope('trans1'):
        x = transition(x, K, wd=wd, is_training=is_training)

    with tf.variable_scope('block2'):
        x = block(x, stages[1], K, is_training=is_training, wd=wd)

    with tf.variable_scope('trans2'):
        x = transition(x, K, wd=wd, is_training=is_training)

    with tf.variable_scope('block3'):
        x = block(x, stages[2], K, is_training=is_training, wd=wd)

    with tf.variable_scope('trans3'):
        x = transition(x, K, wd=wd, is_training=is_training)

    with tf.variable_scope('block4'):
        x = block(x, stages[3], K, is_training=is_training, wd=wd)

    x = common.avgPool(x, 7, 1, padding='VALID')

    x = common.flatten(x)

    if not transfer_mode:
        with tf.variable_scope('output'):
            x = common.fullyConnected(x, num_output, wd=wd)
    else:
        with tf.variable_scope('transfer_output'):
            x = common.fullyConnected(x, num_output, wd=wd)

    return x
Пример #8
0
def getModel(
        x,
        num_output,
        wd,
        is_training,
        num_blocks=[3, 4, 6, 3],  # defaults to 50-layer network
        bottleneck=True):
    conv_weight_initializer = tf.truncated_normal_initializer(stddev=0.1)
    fc_weight_initializer = tf.truncated_normal_initializer(stddev=0.01)
    with tf.variable_scope('scale1'):
        x = common.spatialConvolution(
            x, 7, 2, 64, weight_initializer=conv_weight_initializer, wd=wd)
        x = common.batchNormalization(x, is_training=is_training)
        x = tf.nn.relu(x)

    with tf.variable_scope('scale2'):
        x = common.maxPool(x, 3, 2)
        x = common.resnetStack(x,
                               num_blocks[0],
                               1,
                               64,
                               bottleneck,
                               wd=wd,
                               is_training=is_training)

    with tf.variable_scope('scale3'):
        x = common.resnetStack(x,
                               num_blocks[1],
                               2,
                               128,
                               bottleneck,
                               wd=wd,
                               is_training=is_training)

    with tf.variable_scope('scale4'):
        x = common.resnetStack(x,
                               num_blocks[2],
                               2,
                               256,
                               bottleneck,
                               wd=wd,
                               is_training=is_training)

    with tf.variable_scope('scale5'):
        x = common.resnetStack(x,
                               num_blocks[3],
                               2,
                               512,
                               bottleneck,
                               wd=wd,
                               is_training=is_training)

    # post-net
    x = tf.reduce_mean(x, reduction_indices=[1, 2], name="avg_pool")

    with tf.variable_scope('output'):
        x = common.fullyConnected(x,
                                  num_output,
                                  weight_initializer=fc_weight_initializer,
                                  bias_initializer=tf.zeros_initializer,
                                  wd=wd)

    return x
Пример #9
0
def inference(x,
              num_output,
              wd,
              dropout_rate,
              is_training,
              transfer_mode=False):
    with tf.variable_scope('features'):
        with tf.variable_scope('conv1'):
            network = common.spatialConvolution(x, 7, 2, 64, wd=wd)
            network = common.batchNormalization(network,
                                                is_training=is_training)
            network = tf.nn.relu(network)
        network = common.maxPool(network, 3, 2)
        with tf.variable_scope('conv2'):
            network = common.spatialConvolution(network, 1, 1, 64, wd=wd)
            network = common.batchNormalization(network,
                                                is_training=is_training)
            network = tf.nn.relu(network)
        with tf.variable_scope('conv3'):
            network = common.spatialConvolution(network, 3, 1, 192, wd=wd)
            network = common.batchNormalization(network,
                                                is_training=is_training)
            network = tf.nn.relu(network)
        network = common.maxPool(network, 3, 2)
        with tf.variable_scope('inception3a'):
            network = inception(network,
                                64, [96, 128], [16, 32],
                                32,
                                wd=wd,
                                is_training=is_training)
        with tf.variable_scope('inception3b'):
            network = inception(network,
                                128, [128, 192], [32, 96],
                                64,
                                wd=wd,
                                is_training=is_training)
        network = common.maxPool(network, 3, 2)
        with tf.variable_scope('inception4a'):
            network = inception(network,
                                192, [96, 208], [16, 48],
                                64,
                                wd=wd,
                                is_training=is_training)
        with tf.variable_scope('inception4b'):
            network = inception(network,
                                160, [112, 224], [24, 64],
                                64,
                                wd=wd,
                                is_training=is_training)
        with tf.variable_scope('inception4c'):
            network = inception(network,
                                128, [128, 256], [24, 64],
                                64,
                                wd=wd,
                                is_training=is_training)
        with tf.variable_scope('inception4d'):
            network = inception(network,
                                112, [144, 288], [32, 64],
                                64,
                                wd=wd,
                                is_training=is_training)

    with tf.variable_scope('mainb'):
        with tf.variable_scope('inception4e'):
            main_branch = inception(network,
                                    256, [160, 320], [32, 128],
                                    128,
                                    wd=wd,
                                    is_training=is_training)
        main_branch = common.maxPool(main_branch, 3, 2)
        with tf.variable_scope('inception5a'):
            main_branch = inception(main_branch,
                                    256, [160, 320], [32, 128],
                                    128,
                                    wd=wd,
                                    is_training=is_training)
        with tf.variable_scope('inception5b'):
            main_branch = inception(main_branch,
                                    384, [192, 384], [48, 128],
                                    128,
                                    wd=wd,
                                    is_training=is_training)
        main_branch = common.avgPool(main_branch, 7, 1)
        main_branch = common.flatten(main_branch)
        main_branch = tf.nn.dropout(main_branch, dropout_rate)
        if not transfer_mode:
            with tf.variable_scope('output'):
                main_branch = common.fullyConnected(main_branch,
                                                    num_output,
                                                    wd=wd)
        else:
            with tf.variable_scope('transfer_output'):
                main_branch = common.fullyConnected(main_branch,
                                                    num_output,
                                                    wd=wd)

    with tf.variable_scope('auxb'):
        aux_classifier = common.avgPool(network, 5, 3)
        with tf.variable_scope('conv1'):
            aux_classifier = common.spatialConvolution(aux_classifier,
                                                       1,
                                                       1,
                                                       128,
                                                       wd=wd)
            aux_classifier = common.batchNormalization(aux_classifier,
                                                       is_training=is_training)
            aux_classifier = tf.nn.relu(aux_classifier)
        aux_classifier = common.flatten(aux_classifier)
        with tf.variable_scope('fc1'):
            aux_classifier = common.fullyConnected(aux_classifier, 1024, wd=wd)
            aux_classifier = tf.nn.dropout(aux_classifier, dropout_rate)
        if not transfer_mode:
            with tf.variable_scope('output'):
                aux_classifier = common.fullyConnected(aux_classifier,
                                                       num_output,
                                                       wd=wd)
        else:
            with tf.variable_scope('transfer_output'):
                aux_classifier = common.fullyConnected(aux_classifier,
                                                       num_output,
                                                       wd=wd)

    return tf.concat([main_branch, aux_classifier], 1)