def clip_to_shape(rasterlist, shapefile, outdir = False): """ Simple batch clipping script to clip rasters to shapefiles. Inputs: rasterlist single file, list of files, or directory for which to clip rasters shapefile shapefile to which rasters will be clipped outdir desired output directory. If no output directory is specified, the new files will simply have '_c' added as a suffix. """ rasterlist = enf_rastlist(rasterlist) # ensure output directorycore.exists if outdir and not os.path.exists(outdir): os.makedirs(outdir) for raster in rasterlist: # create output filename with "c" suffix outname = core.create_outname(outdir,raster,'c') # perform double clip , first using clip_management (preserves no data values) # then using arcpy.sa module which can actually do clipping geometry unlike the management tool. arcpy.Clip_management(raster, "#", outname, shapefile, "ClippingGeometry") out = ExtractByMask(outname, shapefile) out.save(outname) print("Clipped and saved: {0}".format(outname)) return
def filter_evi(land_cover_ras): evi_dir = "G:\evi_extract" evi_files = glob.glob(os.path.join(evi_dir, "*.tif")) for evi_file in evi_files: print("Extracting {} by mask".format(evi_file)) filted_evi = ExtractByMask(evi_file, land_cover_ras) filted_evi.save(os.path.join(env.workspace, "evis_for_41", os.path.basename(evi_file)))
def rasterPercentAreas(feature, featureID, inRaster, uniqueRasterIDfield, rasterValueField, fieldPrefix): try: #create results obj results = {} #define land use key value dictionary with all possible values for row in arcpy.da.SearchCursor(inRaster, uniqueRasterIDfield): results[fieldPrefix + str(row[0])] = 0 #mask raster outExtractByMask = ExtractByMask(inRaster, feature) outExtractByMask.save('in_memory/mask.img') #get total cell count for percent area computation field = arcpy.da.TableToNumPyArray('in_memory/mask.img', rasterValueField, skip_nulls=True) sum = field[rasterValueField].sum() #loop over masked raster rows for row in arcpy.da.SearchCursor( 'in_memory/mask.img', [uniqueRasterIDfield, rasterValueField]): #get values value, count = row percentArea = round((float(count) / sum) * 100, 5) results[fieldPrefix + str(row[0])] = percentArea data = ResultObj(featureID, results) return data except: tb = format_exc().split('\n') raise Exception(tb)
def clip_to_shape(rasterlist, shapefile, outdir = False): """ Simple batch clipping script to clip rasters to shapefiles. :param rasterlist: single file, list of files, or directory for which to clip rasters :param shapefile: shapefile to which rasters will be clipped :param outdir: desired output directory. If no output directory is specified, the new files will simply have '_c' added as a suffix. :return output_filelist: list of files created by this function. """ rasterlist = enf_rastlist(rasterlist) output_filelist = [] # ensure output directorycore.exists if outdir and not os.path.exists(outdir): os.makedirs(outdir) for raster in rasterlist: # create output filename with "c" suffix outname = core.create_outname(outdir,raster,'c') # perform double clip , first using clip_management (preserves no data values) # then using arcpy.sa module which can actually do clipping geometry unlike the management tool. arcpy.Clip_management(raster, "#", outname, shapefile, "ClippingGeometry") out = ExtractByMask(outname, shapefile) out.save(outname) output_filelist.append(outname) print("Clipped and saved: {0}".format(outname)) return output_filelist
def extract_by_mask(in_raster, in_mask, output_path): path_check(output_path) if os.path.exists(output_path): print("{} has already been created before".format(output_path)) return print "Extracting {} by mask {}".format(output_path, in_mask) temp_output = ExtractByMask(in_raster, in_mask) temp_output.save(output_path)
def delresident(inpath, outpath): env.workspace = inpath f = os.listdir(inpath) for i in range(len(f)): if f[i].endswith('.tif'): outfile = outpath + '\\' + f[i] outExtractByMask = ExtractByMask(inpath + '\\' + f[i], r"F:\EULUC\city_noresident.tif") outExtractByMask.save(outfile)
def evi_raster_shrink(evi_raster_path, feature_points_path, radius): if not os.path.exists( os.path.join(env.workspace, "feature_points_buffer.shp")): arcpy.Buffer_analysis(feature_points_path, "feature_points_buffer", radius, dissolve_option="ALL") out_raster = ExtractByMask(evi_raster_path, "feature_points_buffer.shp") out_raster.save("evi_raster_shrink.tif") return out_raster
def recortar(entidadRecorte, lista_capas_gdb, save_path): """ Recorta capas en funcion de la entidad de recorte. lista_capas_gdb: lista de capas a cortar save_path: donde guardar la vaina """ inRaster = capa inMaskData = entidadRecorte outExtractByMask = ExtractByMask(inRaster, inMaskData) outExtractByMask.save(os.path.join(ruta_geodb_trabajo, save_path)) if debug: print("estoy recortando {0}".format(capa)) print("estoy guardando en {0}".format(save_path))
def batch_clip_raster(inRaster, inMaskData, savepath): # Check out the ArcGIS Spatial Analyst extension license arcpy.CheckOutExtension("Spatial") cursor = arcpy.SearchCursor(inMaskData) for row in cursor: mask = row.getValue("Shape") name = row.getValue( "name") # name the output layer by COUNTRY_NA field print(name.encode('gbk')) outExtractByMask = ExtractByMask(inRaster, mask) outExtractByMask.save( os.path.join(savepath, name.encode('gbk') + '.tif')) print(os.path.join(savepath, name.encode('gbk') + '.tif'))
def CreateTiff(inShapefile, fieldName, maskShapefile, outRaster): """" """ outIDW = Idw(inShapefile, fieldName, 500, 2, arcpy.sa.RadiusVariable(8)) outExtractByMask = ExtractByMask(outIDW, maskShapefile) arcpy.RasterToOtherFormat_conversion(outExtractByMask, outRaster, "TIFF")
def restrictDomain(self, object, operation): """ Restricts current instance's domain based on object's domain @param object: extent to which the field is restricted @param operation: valid options: "inside", "outside" """ if operation == 'inside': name = "restDom_in_" + str(self.sObj) outputLocation = "in_memory\\" + name + ".tif" # extract by mask outRaster = ExtractByMask(self.filepath, object.filepath) CopyRaster_management(outRaster, outputLocation) restDom = utils.makeField(outputLocation) elif operation == 'outside': raise NotImplementedError("restrictDomain 'outside'") else: raise NotImplementedError(operation) # update cc instance's attributes desc = Describe(outputLocation) restDom.filepath = outputLocation restDom.domain = desc.extent restDom.filename = os.path.basename(outputLocation) return restDom
def CreateMapStratum(mnh, emprise, TextRemap, idfield, outputFC, geodata): # Définir l'environnement de travail arcpy.env.workspace = geodata arcpy.env.overwriteOutput = True disp = arcpy.AddMessage # Extraire par le masque disp("Ectracting MNH ...") pathOutExtract = os.path.join(geodata,"OutExtract") OutExtract = ExtractByMask(mnh, emprise) OutExtract.save(pathOutExtract) # Reclassement disp("Reclassing ...") remap = TextToRemap(TextRemap) pathOutReclass = os.path.join(geodata,"Reclass") OutReclass = Reclassify(pathOutExtract,"Value", remap) OutReclass.save(pathOutReclass) # Convertir en polygon disp("Vectorisating ...") arcpy.RasterToPolygon_conversion(pathOutReclass, "PolyRaster") # clip arcpy.Clip_analysis("PolyRaster", emprise, "PolyRaster_Clip") # identity arcpy.Identity_analysis("PolyRaster_Clip", emprise, "PolyRaster_Ident") # Dissolve disp("Dissolving ...") dissolveFileds =[idfield, "grid_code"] arcpy.Dissolve_management("PolyRaster_Ident", outputFC, dissolveFileds) # supprimer le champ grid_code arcpy.AddField_management(outputFC,"Strate", "SHORT") arcpy.CalculateField_management(outputFC, "Strate", "!grid_code!","PYTHON") lfields = arcpy.ListFields(outputFC) arcpy.DeleteField_management(outputFC,"grid_code") # retourner le résultat : return outputFC
def extract_raster(**kwargs): """ Description: extracts a raster to a mask Inputs: 'work_geodatabase' -- path to a file geodatabase that will serve as the workspace 'input_array' -- an array containing the target raster to extract (must be first) and the mask raster (must be second) 'output_array' -- an array containing the output raster Returned Value: Returns a raster dataset Preconditions: the initial raster must be created from other scripts and the study area raster must be created manually """ # Import packages import arcpy from arcpy.sa import ExtractByMask from arcpy.sa import Raster import datetime import time # Parse key word argument inputs work_geodatabase = kwargs['work_geodatabase'] input_raster = kwargs['input_array'][0] mask_raster = kwargs['input_array'][1] output_raster = kwargs['output_array'][0] # Set overwrite option arcpy.env.overwriteOutput = True # Set workspace arcpy.env.workspace = work_geodatabase # Set snap raster and extent arcpy.env.snapRaster = mask_raster arcpy.env.extent = Raster(mask_raster).extent # Extract raster to study area print('\t\tPerforming extraction to study area...') iteration_start = time.time() extract_raster = ExtractByMask(input_raster, mask_raster) arcpy.management.CopyRaster(extract_raster, output_raster, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE', 'CURRENT_SLICE', 'NO_TRANSPOSE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\t\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t\t----------') out_process = f'\tSuccessfully extracted raster data to mask.' return out_process
def testStatistics(feature, featureID, calculateStat): str900_all = "D:\\StreamStats\\ny_strgrid\\str900_all" ned10sl = "D:\\ned10\\output\\ned10sl_utm.img" #create results obj results = {} #arcpy.CopyFeatures_management(feature, "C:\\NYBackup\\NYFF2016\\LGSS_sites\\output\\sh_" + featureID + ".shp") # Process: Extract by Mask strExtractByMask = ExtractByMask(str900_all, feature) strExtractByMask.save("C:\\NYBackup\\NYFF2016\\LGSS_sites\\output\\str_" + featureID + ".img") slExtractByMask = ExtractByMask(ned10sl, strExtractByMask) slExtractByMask.save("C:\\NYBackup\\NYFF2016\\LGSS_sites\\output\\sl_" + featureID + ".img") value = arcpy.GetRasterProperties_management(slExtractByMask, calculateStat).getOutput(0) value = round(float(value), 5) results[calculateStat] = value data = ResultObj(featureID, results) return data
def rasterStatistics(feature, featureID, inRaster, calculateStat): try: #create results obj results = {} #get values outExtractByMask = ExtractByMask(inRaster, feature) value = arcpy.GetRasterProperties_management( outExtractByMask, calculateStat).getOutput(0) value = round(float(value), 5) results[calculateStat] = value data = ResultObj(featureID, results) return data except: try: #check raster cell size against input cellsize = float( arcpy.GetRasterProperties_management(inRaster, 'CELLSIZEX').getOutput(0)) print 'in Except block, area check:', feature.area, cellsize**2 #get centroid value if first method failed value = arcpy.GetCellValue_management( inRaster, str(feature.centroid.X) + ' ' + str(feature.centroid.Y)).getOutput(0) value = round(float(value), 5) results[calculateStat] = value data = ResultObj(featureID, results) return data except: tb = format_exc() raise Exception(tb)
iteration = iteration + 1 arcpy.AddMessage( "--------------------------------------------------------------") arcpy.AddMessage("Iteration {0} is running!".format(iteration)) # DEM difference [m] dh = Raster(DEM_master) - Raster(DEM_slave_after) # slope of the slave DEM [degree] slp = Slope(DEM_slave_after, "DEGREE", "1") # aspect of the slave DEM [degree] asp = Aspect(DEM_slave_after) # Mask 'dh' using statale terrain polygon dh_mask = ExtractByMask(dh, OffGlacier) # Mask 'slp' and 'asp' using 'dh_mask' in order to keep same georeference as 'dh_mask' slp_mask = ExtractByMask(slp, dh_mask) asp_mask = ExtractByMask(asp, dh_mask) del dh, slp, asp # Raster to Array dh_mask_arr = arcpy.RasterToNumPyArray(dh_mask, nodata_to_value=-32768) slp_mask_arr = arcpy.RasterToNumPyArray(slp_mask, nodata_to_value=-32768) asp_mask_arr = arcpy.RasterToNumPyArray(asp_mask, nodata_to_value=-32768) del dh_mask, slp_mask, asp_mask # save "dh_mask" as csv file
def create_buffered_tiles(**kwargs): """ Description: creates buffered grid rasters Inputs: 'tile_name' -- a field name in the grid index that stores the tile name 'distance' -- a string representing a number and units for buffer distance 'work_geodatabase' -- a geodatabase to store temporary results 'input_array' -- an array containing the input grid index and a clip area 'output_folder' -- an empty folder to store the output tiles Returned Value: Returns a raster dataset for each grid in grid index Preconditions: grid index must have been generated using create_grid_indices """ # Import packages import arcpy from arcpy.sa import ExtractByMask from arcpy.sa import Reclassify from arcpy.sa import RemapRange import datetime import os import time # Parse key word argument inputs tile_name = kwargs['tile_name'] distance = kwargs['distance'] work_geodatabase = kwargs['work_geodatabase'] grid_index = kwargs['input_array'][0] snap_raster = kwargs['input_array'][1] output_folder = kwargs['output_folder'] # Set overwrite option arcpy.env.overwriteOutput = True # Use two thirds of the possible cores on the machine arcpy.env.parallelProcessingFactor = '66%' # Set workspace arcpy.env.workspace = work_geodatabase # Set the snap raster arcpy.env.snapRaster = snap_raster # Print initial status print(f'Extracting grid tiles from {os.path.split(grid_index)[1]}...') # Define fields for search cursor fields = ['SHAPE@', tile_name] # Initiate search cursor on grid index with defined fields with arcpy.da.SearchCursor(grid_index, fields) as cursor: # Iterate through each feature in the feature class for row in cursor: # Define an output and temporary raster buffer_feature = os.path.join(arcpy.env.workspace, 'Grid_' + row[1] + '_Buffer') output_grid = os.path.join(output_folder, 'Grid_' + row[1] + '.tif') # If tile does not exist, then create tile if arcpy.Exists(output_grid) == 0: print( f'\tProcessing grid tile {os.path.split(output_grid)[1]}...' ) iteration_start = time.time() # Define feature feature = row[0] # Buffer feature by user specified distance arcpy.analysis.Buffer(feature, buffer_feature, distance) # Extract snap raster to buffered tile feature extract_raster = ExtractByMask(snap_raster, buffer_feature) # Reclassify values to 1 reclassify_raster = Reclassify(extract_raster, 'Value', RemapRange([[1, 100000, 1]])) # Copy raster to output arcpy.management.CopyRaster(reclassify_raster, output_grid, '', '', '0', 'NONE', 'NONE', '1_BIT', 'NONE', 'NONE', 'TIFF', 'None') # If temporary feature class exists, then delete it if arcpy.Exists(buffer_feature) == 1: arcpy.management.Delete(buffer_feature) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tOutput grid {os.path.split(output_grid)[1]} completed at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print( f'\tOutput grid {os.path.split(output_grid)[1]} already exists...' ) print('\t----------') # Return final status out_process = 'Completed creation of grid tiles.' return out_process
def format_climate_grids(**kwargs): """ Description: extracts climate data to the grid Inputs: 'input_array' -- an array containing the study area raster (must be first), grid raster (must be second) and the climate raster (last) 'output_array' -- an array containing the output climate raster for the grid Returned Value: Returns a raster dataset on disk containing the combined climate property for a grid Preconditions: requires an input grid raster and climate property raster """ # Import packages import arcpy from arcpy.sa import ExtractByMask from arcpy.sa import Raster import datetime import time # Parse key word argument inputs study_area = kwargs['input_array'][0] grid_raster = kwargs['input_array'][1] climate_raster = kwargs['input_array'][2] output_raster = kwargs['output_array'][0] # Set overwrite option arcpy.env.overwriteOutput = True # Set snap raster and extent arcpy.env.snapRaster = study_area arcpy.env.cellSize = 'MINOF' arcpy.env.extent = Raster(grid_raster).extent # Extract the climate data to the grid raster and study area print(f'\tExtracting climate data to grid...') iteration_start = time.time() extract_grid = ExtractByMask(climate_raster, grid_raster) extract_area = ExtractByMask(extract_grid, study_area) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') # Export extracted raster to output raster print(f'\tExporting extracted raster to output raster...') iteration_start = time.time() arcpy.CopyRaster_management(extract_area, output_raster, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') out_process = f'Finished formatting climate data to grid.' return out_process
def glacier_debris(band_4, band_5, glacier_outline, out_dir): print 'Running glacier_debris' if Want_CloudRemoval == 'True': outExtractByMask = ExtractByMask( band_4, mask_dir + '\\' + band_4.split('\\')[-1].split('_b')[0][0:16] + band_4.split('\\')[-1].split('_b')[0][17:21] + 'mask.shp') outExtractByMask.save('del_nodatagone4.TIF') outExtractByMask = ExtractByMask( band_5, mask_dir + '\\' + band_4.split('\\')[-1].split('_b')[0][0:16] + band_4.split('\\')[-1].split('_b')[0][17:21] + 'mask.shp') outExtractByMask.save('del_nodatagone5.TIF') outExtractByMask = ExtractByMask('del_nodatagone4.TIF', glacier_outline) outExtractByMask.save('del_mask4.TIF') outExtractByMask = ExtractByMask('del_nodatagone5.TIF', glacier_outline) outExtractByMask.save('del_mask5.TIF') print 'extract' else: outExtractByMask = ExtractByMask(band_4, glacier_outline) outExtractByMask.save('del_mask4.TIF') outExtractByMask = ExtractByMask(band_5, glacier_outline) outExtractByMask.save('del_mask5.TIF') print 'extract' #Convert Raster to float for decimal threshold values arcpy.RasterToFloat_conversion('del_mask4.TIF', 'del_band_4a.flt') arcpy.RasterToFloat_conversion('del_mask5.TIF', 'del_band_5a.flt') arcpy.Divide_3d('del_band_4a.flt', 'del_band_5a.flt', 'del_division.TIF') print 'division' outSetNull = SetNull('del_division.TIF', 'del_division.TIF', 'VALUE > ' + str(threshold)) #path to results folder, for loops add a counter if images are from the same year and day result_name = glacier_outline.split('.shp')[0].split( '\\' )[-1] + '_' + band_4.split('\\')[-1][9:13] + 'y' + band_4.split( '\\')[-1][13:16] + 'd' + '_L' + band_4.split( '\\')[-1][2:3] + '_' + Lband.split('_')[-1][1:2] + Hband.split( '_')[-1][1:2] + 'b' + str(int( threshold * 100)) + 't' + str(A_remove) + 'r' + str(A_fill) + 'f' result_path = out_dir + glacier_outline.split('.shp')[0].split( '\\' )[-1] + '_' + band_4.split('\\')[-1][9:13] + 'y' + band_4.split( '\\')[-1][13:16] + 'd' + '_L' + band_4.split( '\\')[-1][2:3] + '_' + Lband.split('_')[-1][1:2] + Hband.split( '_')[-1][1:2] + 'b' + str(int( threshold * 100)) + 't' + str(A_remove) + 'r' + str(A_fill) + 'f' if str(result_name + '1.shp' in os.listdir(out_dir)) == 'True': result_path = result_path + '2' elif str(result_name + '2.shp' in os.listdir(out_dir)) == 'True': result_path = result_path + '3' elif str(result_name + '3.shp' in os.listdir(out_dir)) == 'True': result_path = result_path + '4' elif str(result_name + '4.shp' in os.listdir(out_dir)) == 'True': result_path = result_path + '5' elif str(result_name + '5.shp' in os.listdir(out_dir)) == 'True': result_path = result_path + '6' else: result_path = result_path + '1' result_file = result_path + '.TIF' print 'result file: ' + result_file outSetNull.save(result_file) print 'Level 1 product produced' #Float raster to integer outInt = Int(result_file) outInt.save('del_result_file_int.TIF') # Set local variables inRaster = 'del_result_file_int.TIF' outPolygons = 'del_debris.shp' field = 'VALUE' arcpy.RasterToPolygon_conversion(inRaster, outPolygons, 'NO_SIMPLIFY', field) print 'to polygon' #Process: Dissolve. need to create "value" row where all elements=0 arcpy.AddField_management('del_debris.shp', 'value', 'SHORT', 1, '', '', '', '', '') arcpy.Dissolve_management('del_debris.shp', 'del_debris_dissolve.shp', 'value') print 'dissolve' # Run the tool to create a new fc with only singlepart features arcpy.MultipartToSinglepart_management('del_debris_dissolve.shp', 'del_explode.shp') print 'explode' # Process: Calculate polygon area (km2) arcpy.CalculateAreas_stats('del_explode.shp', 'del_area.shp') arcpy.MakeFeatureLayer_management('del_area.shp', 'tempLayer') # Execute SelectLayerByAttribute to determine which features to delete expression = 'F_AREA <=' + str(A_remove) # m2 arcpy.SelectLayerByAttribute_management('tempLayer', 'NEW_SELECTION', expression) arcpy.DeleteFeatures_management('tempLayer') print 'Shapes with an area <= ' + str( A_remove) + ' m2 removed; ' + str( A_remove / 900) + ' pixles, if 30m pixels' #Delete polygons < xx m2 arcpy.Delete_management('tempLayer') print 'tempLayer deleted' result_file2 = result_path + '.shp' print 'Level 2 result file: ' + result_file2 #Process: aggrigate (distance=1 m minimum area=0 minimum hole size=xx m: ) CA.AggregatePolygons('del_area.shp', result_file2, 1, 0, A_fill, 'NON_ORTHOGONAL') print 'holes with an area <= ' + str( A_fill) + ' m2 filled/merged with debris polygon; ' + str( A_fill / 900) + ' pixles, if 30m pixels' rasterList = arcpy.ListRasters('*del*') for raster in rasterList: arcpy.Delete_management(raster) fcList = arcpy.ListFeatureClasses('*del*') for fc in fcList: arcpy.Delete_management(fc) print 'intermediate files deleted' print 'level 2 product produced'
campo = "OBJECTID" entidadRecorte = arcpy.Select_analysis(catastro_capa, r"C:\script\workspace\datosInput.gdb", campo + "=" + str(input_catastro)) #entidadRecorte = arcpy.Select_analysis(catastro_capa,r"C:\script\workspace\datosInput.gdb",campo + "= '" + str(numero) + "'") ### REALIZAMOS EL CLIP DE CATASTRO CON LOS DATOS CLIMATICOS: arcpy.env.workspace = r"C:\script\workspace\datosInput.gdb" lista_capas_gdb = arcpy.ListDatasets("*", "Raster") #print(lista_capas_gdb) for capa in lista_capas_gdb: inRaster = capa inMaskData = entidadRecorte outExtractByMask = ExtractByMask(inRaster, inMaskData) outExtractByMask.save( os.path.join(r"C:\script\workspace\datosInput.gdb", capa + "_recorte")) # print(f"estoy recortando {capa}") #RECORTE DATOS CONSTANTES: #RECORTAMOS LA CAPA DE GEOLOGIA enRaster = geologia_capa enMaskData = entidadRecorte outExtractByMask = ExtractByMask(enRaster, enMaskData) outExtractByMask.save(r"C:\script\workspace\datosInput.gdb\geologia_recorte") #print("He recortado geologia") #RECORTAMOS CAPA DE PENDIENTE: raster = pendiente_capa
def create_composite_dem(**kwargs): """ Description: mosaics extracted source rasters with first data priority and extracts to mask Inputs: 'cell_size' -- a cell size for the output DEM 'output_projection' -- the machine number for the output projection 'work_geodatabase' -- a geodatabase to store temporary results 'input_array' -- an array containing the grid raster (must be first) and the list of sources DEMs in prioritized order 'output_array' -- an array containing the output raster Returned Value: Returns a raster dataset on disk containing the merged source DEM Preconditions: requires source DEMs and predefined grid """ # Import packages import arcpy from arcpy.sa import ExtractByMask from arcpy.sa import Raster import datetime import os import time # Parse key word argument inputs cell_size = kwargs['cell_size'] output_projection = kwargs['output_projection'] elevation_inputs = kwargs['input_array'] grid_raster = elevation_inputs.pop(0) composite_raster = kwargs['output_array'][0] # Set overwrite option arcpy.env.overwriteOutput = True # Use two thirds of cores on processes that can be split. arcpy.env.parallelProcessingFactor = "75%" # Set snap raster and extent arcpy.env.snapRaster = grid_raster arcpy.env.extent = Raster(grid_raster).extent # Determine input raster value type value_number = arcpy.management.GetRasterProperties( elevation_inputs[0], "VALUETYPE")[0] no_data_value = arcpy.Describe(elevation_inputs[0]).noDataValue value_dictionary = { 0: '1_BIT', 1: '2_BIT', 2: '4_BIT', 3: '8_BIT_UNSIGNED', 4: '8_BIT_SIGNED', 5: '16_BIT_UNSIGNED', 6: '16_BIT_SIGNED', 7: '32_BIT_UNSIGNED', 8: '32_BIT_SIGNED', 9: '32_BIT_FLOAT', 10: '64_BIT' } value_type = value_dictionary.get(int(value_number)) print(f'Output data type will be {value_type}.') print(f'Output no data value will be {no_data_value}.') # Define the target projection composite_projection = arcpy.SpatialReference(output_projection) # Define folder structure grid_title = os.path.splitext(os.path.split(grid_raster)[1])[0] mosaic_location, mosaic_name = os.path.split(composite_raster) # Create mosaic location if it does not already exist if os.path.exists(mosaic_location) == 0: os.mkdir(mosaic_location) # Create source folder within mosaic location if it does not already exist source_folder = os.path.join(mosaic_location, 'sources') if os.path.exists(source_folder) == 0: os.mkdir(source_folder) # Create an empty list to store existing extracted source rasters for the area of interest input_length = len(elevation_inputs) input_rasters = [] count = 1 # Iterate through all input rasters to extract to grid and append to input list for raster in elevation_inputs: # Define output raster file path output_raster = os.path.join(source_folder, os.path.split(raster)[1]) # Extract input raster if extracted raster does not already exist if os.path.exists(output_raster) == 0: try: print( f'\tExtracting elevation source {count} of {input_length}...' ) iteration_start = time.time() # Extract raster to mask extract_raster = ExtractByMask(raster, grid_raster) # Copy extracted raster to output print( f'\tSaving elevation source {count} of {input_length}...') arcpy.management.CopyRaster(extract_raster, output_raster, '', '', no_data_value, 'NONE', 'NONE', value_type, 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') except: print('\tElevation source does not overlap grid...') print('\t----------') else: print( f'\tExtracted elevation source {count} of {input_length} already exists...' ) print('\t----------') # Append extracted input raster to inputs list if os.path.exists(output_raster) == 1: input_rasters.append(output_raster) # Increase counter count += 1 # Append the grid raster to the list of input rasters input_rasters.append(grid_raster) # Report the raster priority order raster_order = [] for raster in input_rasters: name = os.path.split(raster)[1] raster_order.append(name) print(f'\tPriority of input sources for {grid_title}...') count = 1 for raster in raster_order: print(f'\t\t{count}. {raster}') # Increase the counter count += 1 # Mosaic raster tiles to new raster print(f'\tMosaicking the input rasters for {grid_title}...') iteration_start = time.time() arcpy.management.MosaicToNewRaster(input_rasters, mosaic_location, mosaic_name, composite_projection, value_type, cell_size, '1', 'FIRST', 'FIRST') # Enforce correct projection arcpy.management.DefineProjection(composite_raster, composite_projection) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') out_process = f'Finished elevation composite for {grid_title}.' return out_process
def convert_fire_history(**kwargs): """ Description: converts fire history polygons to rasters and extracts to major grid and study area Inputs: 'work_geodatabase' -- path to a file geodatabase that will serve as the workspace 'input_array' -- an array containing the target feature class to convert (must be first), the study area raster (must be second), and the grid raster (must be third) 'output_array' -- an array containing the output raster Returned Value: Returns a raster dataset Preconditions: the target feature class must be created using the recent fire history function """ # Import packages import arcpy from arcpy.sa import Con from arcpy.sa import ExtractByMask from arcpy.sa import IsNull from arcpy.sa import Raster import datetime import time import os # Parse key word argument inputs work_geodatabase = kwargs['work_geodatabase'] input_feature = kwargs['input_array'][0] study_area = kwargs['input_array'][1] grid_raster = kwargs['input_array'][2] output_raster = kwargs['output_array'][0] # Set overwrite option arcpy.env.overwriteOutput = True # Set workspace arcpy.env.workspace = work_geodatabase # Set snap raster and extent arcpy.env.snapRaster = study_area arcpy.env.extent = Raster(grid_raster).extent arcpy.env.cellSize = 'MINOF' # Define intermediate rasters convert_raster = os.path.splitext(output_raster)[0] + '.tif' # Convert fire history feature class to raster print('\tConverting feature class to raster within grid...') iteration_start = time.time() arcpy.conversion.PolygonToRaster(input_feature, 'FireYear', convert_raster, 'CELL_CENTER', 'FireYear', 10) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})') print('\t----------') # Convert no data values to zero print('\tConverting no data to zero...') iteration_start = time.time() zero_raster = Con(IsNull(Raster(convert_raster)), 0, Raster(convert_raster)) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})') print('\t----------') # Extract raster to study area print(f'\tExtracting raster to grid...') iteration_start = time.time() extract1_raster = ExtractByMask(zero_raster, grid_raster) print(f'\tExtracting raster to study area...') extract2_raster = ExtractByMask(extract1_raster, study_area) print(f'\tCopying extracted raster to new raster...') arcpy.management.CopyRaster(extract2_raster, output_raster, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE', 'CURRENT_SLICE', 'NO_TRANSPOSE' ) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print(f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})') print('\t----------') out_process = f'Successfully extracted recent fire history to study area.' return out_process
def evi_raster_shrink(evi_raster_path, feature_points_path, radius): arcpy.Buffer_analysis(feature_points_path, "feature_points_buffers", radius, dissolve_option="ALL") out_raster = ExtractByMask(evi_raster_path, "feature_points_buffers") out_raster.save("evi_raster_shrink") return out_raster
def VegetationHeightProfil(emprise, mnh, bornes, OutputFc, idfield, geodata): from arcpy import env from arcpy.sa import ExtractByMask, Slope arcpy.CheckOutExtension("spatial") env.workspace= geodata env.overwriteOutput = True # Extraire le mnh pathExtract = os.path.join(geodata, "ExtractMNH") Extract_MNH = ExtractByMask(mnh, emprise) Extract_MNH.save(pathExtract) # Calculer la pente pathSlope = os.path.join(geodata,"SlopeMNH") slope_mnh = Slope(pathExtract,"DEGREE") slope_mnh.save(pathSlope) # Transformer le raster en point arcpy.RasterToPoint_conversion(slope_mnh, "Slope", "Value") # Jointure spatiale Cauler Moyenne et Ecart type fmap = arcpy.FieldMappings() fmap.addTable(emprise) fmap.addTable("Slope") # Create fieldmap for Mean fldMean = arcpy.FieldMap() fldMean.addInputField("Slope", "grid_code") fMean = fldMean.outputField fMean.name = "Mean" fMean.aliasName = "Mean" fldMean.outputField = fMean fldMean.mergeRule= "Mean" fmap.addFieldMap(fldMean) # Create fieldmap for StdDev fldEcartype = arcpy.FieldMap() fldEcartype.addInputField("Slope","grid_code") fEcartype = fldEcartype.outputField fEcartype.name = "Stdv" fEcartype.aliasName = "Stdv" fldEcartype.outputField = fEcartype fldEcartype.mergeRule = "StdDev" fmap.addFieldMap(fldEcartype) # Perform de spatial join arcpy.SpatialJoin_analysis(emprise, "Slope", OutputFc, "", "", fmap) # Create a field arcpy.AddField_management(OutputFc, "Prof_Typ", "TEXT") # Delete Field: for fld in arcpy.ListFields(OutputFc): if fld.name not in [idfield,"Stdv","Mean","Prof_Typ"]: try: arcpy.DeleteField_management(OutputFc,fld.name) except: pass # Evaluer la pente avec les bornes b1 = bornes[0] b2 = bornes[1] Code_bloc="""def Eval(Moyenne, EcarType): if Moyenne > """+str(b2)+ """ and EcarType < """+str(b1)+ """ : ProfilType = "Asc/Desc_Continue" if Moyenne < """+str(b2)+ """ and EcarType < """+str(b1)+ """ : ProfilType = "Plat" else : ProfilType = "Hétérogène" return ProfilType """ expression = "Eval(!Mean!,!Stdv!)" # Calcul du champ Prof Typ arcpy.CalculateField_management(OutputFc, "Prof_Typ", expression, "PYTHON_9.3", Code_bloc) # Return the result return OutputFc
def extract(night_image): return ExtractByMask(night_image, UNITED_STATE_MASK)
def calculate_topographic_properties(**kwargs): """ Description: calculates topographic properties from an elevation raster Inputs: 'z_unit' -- a string value of either 'Meter' or 'Foot' representing the vertical unit of the elevation raster 'input_array' -- an array containing the grid raster (must be first) and the elevation raster 'output_array' -- an array containing the output rasters for aspect, compound topographic index, heat load index, integrated moisture index, roughness, site exposure, slope, surface area ratio, and surface relief ratio (in that order) Returned Value: Returns a raster dataset on disk for each topographic property Preconditions: requires an input DEM that can be created through other scripts in this repository """ # Import packages import arcpy from arcpy.sa import Con from arcpy.sa import IsNull from arcpy.sa import ExtractByMask from arcpy.sa import Raster from arcpy.sa import Int from arcpy.sa import FlowDirection from arcpy.sa import FlowAccumulation from arcpy.sa import Slope from arcpy.sa import Aspect from package_Geomorphometry import compound_topographic from package_Geomorphometry import getZFactor from package_Geomorphometry import linear_aspect from package_Geomorphometry import mean_slope from package_Geomorphometry import roughness from package_Geomorphometry import site_exposure from package_Geomorphometry import surface_area from package_Geomorphometry import surface_relief from package_Geomorphometry import topographic_position from package_Geomorphometry import topographic_radiation import datetime import os import time # Parse key word argument inputs z_unit = kwargs['z_unit'] grid_raster = kwargs['input_array'][0] elevation_input = kwargs['input_array'][1] elevation_output = kwargs['output_array'][0] aspect_output = kwargs['output_array'][1] cti_output = kwargs['output_array'][2] roughness_output = kwargs['output_array'][3] exposure_output = kwargs['output_array'][4] slope_output = kwargs['output_array'][5] area_output = kwargs['output_array'][6] relief_output = kwargs['output_array'][7] position_output = kwargs['output_array'][8] radiation_output = kwargs['output_array'][9] # Set overwrite option arcpy.env.overwriteOutput = True # Use two thirds of cores on processes that can be split. arcpy.env.parallelProcessingFactor = "75%" # Set snap raster and extent arcpy.env.snapRaster = grid_raster arcpy.env.extent = Raster(grid_raster).extent # Define folder structure grid_title = os.path.splitext(os.path.split(grid_raster)[1])[0] raster_folder = os.path.split(elevation_output)[0] intermediate_folder = os.path.join(raster_folder, 'intermediate') # Create raster folder if it does not already exist if os.path.exists(raster_folder) == 0: os.mkdir(raster_folder) # Create intermediate folder if it does not already exist if os.path.exists(intermediate_folder) == 0: os.mkdir(intermediate_folder) # Define intermediate datasets flow_direction_raster = os.path.join(intermediate_folder, 'flow_direction.tif') flow_accumulation_raster = os.path.join(intermediate_folder, 'flow_accumulation.tif') raw_slope_raster = os.path.join(intermediate_folder, 'raw_slope.tif') raw_aspect_raster = os.path.join(intermediate_folder, 'raw_aspect.tif') # Get the z factor appropriate to the xy and z units zFactor = getZFactor(elevation_input, z_unit) #### CALCULATE INTERMEDIATE DATASETS # Calculate flow direction if it does not already exist if os.path.exists(flow_direction_raster) == 0: # Calculate flow direction print(f'\tCalculating flow direction for {grid_title}...') iteration_start = time.time() flow_direction = FlowDirection(elevation_input, 'NORMAL', '', 'D8') flow_direction.save(flow_direction_raster) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tFlow direction already exists for {grid_title}.') print('\t----------') # Calculate flow accumulation if it does not already exist if os.path.exists(flow_accumulation_raster) == 0: # Calculate flow accumulation print(f'\tCalculating flow accumulation for {grid_title}...') iteration_start = time.time() flow_accumulation = FlowAccumulation(flow_direction_raster, '', 'FLOAT', 'D8') flow_accumulation.save(flow_accumulation_raster) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tFlow accumulation already exists for {grid_title}.') print('\t----------') # Calculate raw slope in degrees if it does not already exist if os.path.exists(raw_slope_raster) == 0: # Calculate slope print(f'\tCalculating raw slope for {grid_title}...') iteration_start = time.time() raw_slope = Slope(elevation_input, "DEGREE", zFactor) raw_slope.save(raw_slope_raster) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tRaw slope already exists for {grid_title}.') print('\t----------') # Calculate raw aspect if it does not already exist if os.path.exists(raw_aspect_raster) == 0: # Calculate aspect print(f'\tCalculating raw aspect for {grid_title}...') iteration_start = time.time() raw_aspect = Aspect(elevation_input, 'PLANAR', z_unit) raw_aspect.save(raw_aspect_raster) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tRaw aspect already exists for {grid_title}.') print('\t----------') #### CALCULATE INTEGER ELEVATION # Calculate integer elevation if it does not already exist if arcpy.Exists(elevation_output) == 0: print(f'\tCalculating integer elevation for {grid_title}...') iteration_start = time.time() # Round to integer print(f'\t\tConverting values to integers...') integer_elevation = Int(Raster(elevation_input) + 0.5) # Copy extracted raster to output print(f'\t\tCreating output raster...') arcpy.management.CopyRaster(integer_elevation, elevation_output, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tInteger elevation already exists for {grid_title}.') print('\t----------') #### CALCULATE LINEAR ASPECT # Calculate linear aspect if it does not already exist if arcpy.Exists(aspect_output) == 0: print(f'\tCalculating linear aspect for {grid_title}...') iteration_start = time.time() # Create an initial linear aspect calculation using the linear aspect function aspect_intermediate = os.path.splitext( aspect_output)[0] + '_intermediate.tif' linear_aspect(raw_aspect_raster, aspect_intermediate) # Round to integer print(f'\t\tConverting values to integers...') integer_aspect = Int(Raster(aspect_intermediate) + 0.5) # Fill missing data (no aspect) with values of -1 print(f'\t\tFilling values of no aspect...') conditional_aspect = Con(IsNull(integer_aspect), -1, integer_aspect) # Extract filled raster to grid mask print(f'\t\tExtracting filled raster to grid...') extract_aspect = ExtractByMask(conditional_aspect, grid_raster) # Copy extracted raster to output print(f'\t\tCreating output raster...') arcpy.management.CopyRaster(extract_aspect, aspect_output, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Delete intermediate dataset if possible try: arcpy.management.Delete(aspect_intermediate) except: print('\t\tCould not delete intermediate dataset...') # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tLinear aspect already exists for {grid_title}.') print('\t----------') #### CALCULATE COMPOUND TOPOGRAPHIC INDEX # Calculate compound topographic index if it does not already exist if arcpy.Exists(cti_output) == 0: print(f'\tCalculating compound topographic index for {grid_title}...') iteration_start = time.time() # Create an intermediate compound topographic index calculation cti_intermediate = os.path.splitext( cti_output)[0] + '_intermediate.tif' compound_topographic(elevation_input, flow_accumulation_raster, raw_slope_raster, cti_intermediate) # Convert to integer values print(f'\t\tConverting values to integers...') integer_compound = Int((Raster(cti_intermediate) * 100) + 0.5) # Copy integer raster to output print(f'\t\tCreating output raster...') arcpy.management.CopyRaster(integer_compound, cti_output, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Delete intermediate dataset if possible try: arcpy.management.Delete(cti_intermediate) except: print('\t\tCould not delete intermediate dataset...') # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tCompound topographic index already exists for {grid_title}.') print('\t----------') #### CALCULATE ROUGHNESS # Calculate roughness if it does not already exist if arcpy.Exists(roughness_output) == 0: print(f'\tCalculating roughness for {grid_title}...') iteration_start = time.time() # Create an intermediate compound topographic index calculation roughness_intermediate = os.path.splitext( roughness_output)[0] + '_intermediate.tif' roughness(elevation_input, roughness_intermediate) # Convert to integer values print(f'\t\tConverting values to integers...') integer_roughness = Int(Raster(roughness_intermediate) + 0.5) # Fill missing data (no aspect) with values of 0 print(f'\t\tFilling values of roughness...') conditional_roughness = Con(IsNull(integer_roughness), 0, integer_roughness) # Extract filled raster to grid mask print(f'\t\tExtracting filled raster to grid...') extract_roughness = ExtractByMask(conditional_roughness, grid_raster) # Copy extracted raster to output print(f'\t\tCreating output raster...') arcpy.management.CopyRaster(extract_roughness, roughness_output, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Delete intermediate dataset if possible try: arcpy.management.Delete(roughness_intermediate) except: print('\t\tCould not delete intermediate dataset...') # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tRoughness already exists for {grid_title}.') print('\t----------') #### CALCULATE SITE EXPOSURE # Calculate site exposure if it does not already exist if arcpy.Exists(exposure_output) == 0: print(f'\tCalculating site exposure for {grid_title}...') iteration_start = time.time() # Create an intermediate compound topographic index calculation exposure_intermediate = os.path.splitext( exposure_output)[0] + '_intermediate.tif' site_exposure(raw_aspect_raster, raw_slope_raster, exposure_intermediate) # Convert to integer values print(f'\t\tConverting values to integers...') integer_exposure = Int((Raster(exposure_intermediate) * 100) + 0.5) # Copy extracted raster to output print(f'\t\tCreating output raster...') arcpy.management.CopyRaster(integer_exposure, exposure_output, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Delete intermediate dataset if possible try: arcpy.management.Delete(exposure_intermediate) except: print('\t\tCould not delete intermediate dataset...') # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tSite exposure already exists for {grid_title}.') print('\t----------') #### CALCULATE MEAN SLOPE # Calculate mean slope if it does not already exist if arcpy.Exists(slope_output) == 0: print(f'\tCalculating mean slope for {grid_title}...') iteration_start = time.time() # Create an intermediate mean slope calculation slope_intermediate = os.path.splitext( slope_output)[0] + '_intermediate.tif' mean_slope(raw_slope_raster, slope_intermediate) # Convert to integer values print(f'\t\tConverting values to integers...') integer_slope = Int(Raster(slope_intermediate) + 0.5) # Copy extracted raster to output print(f'\t\tCreating output raster...') arcpy.management.CopyRaster(integer_slope, slope_output, '', '', '-128', 'NONE', 'NONE', '8_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Delete intermediate dataset if possible try: arcpy.management.Delete(slope_intermediate) except: print('\t\tCould not delete intermediate dataset...') # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tMean slope already exists for {grid_title}.') print('\t----------') #### CALCULATE SURFACE AREA RATIO # Calculate surface area ratio if it does not already exist if os.path.exists(area_output) == 0: print(f'\tCalculating surface area ratio for {grid_title}...') iteration_start = time.time() # Create an intermediate surface area ratio calculation area_intermediate = os.path.splitext( area_output)[0] + '_intermediate.tif' surface_area(raw_slope_raster, area_intermediate) # Convert to integer values print(f'\t\tConverting values to integers...') integer_area = Int((Raster(area_intermediate) * 10) + 0.5) # Copy extracted raster to output print(f'\t\tCreating output raster...') arcpy.management.CopyRaster(integer_area, area_output, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Delete intermediate dataset if possible try: arcpy.management.Delete(area_intermediate) except: print('\t\tCould not delete intermediate dataset...') # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tSurface area ratio already exists for {grid_title}.') print('\t----------') #### CALCULATE SURFACE RELIEF RATIO # Calculate surface relief ratio if it does not already exist if arcpy.Exists(relief_output) == 0: print(f'\tCalculating surface relief ratio for {grid_title}...') iteration_start = time.time() # Create an intermediate surface relief ratio calculation relief_intermediate = os.path.splitext( relief_output)[0] + '_intermediate.tif' surface_relief(elevation_input, relief_intermediate) # Convert to integer values print(f'\t\tConverting values to integers...') integer_relief = Int((Raster(relief_intermediate) * 1000) + 0.5) # Copy extracted raster to output print(f'\t\tCreating output raster...') arcpy.management.CopyRaster(integer_relief, relief_output, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Delete intermediate dataset if possible try: arcpy.management.Delete(relief_intermediate) except: print('\t\tCould not delete intermediate dataset...') # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tSurface relief ratio already exists for {grid_title}.') print('\t----------') #### CALCULATE TOPOGRAPHIC POSITION # Calculate topographic position if it does not already exist if arcpy.Exists(position_output) == 0: print(f'\tCalculating topographic position for {grid_title}...') iteration_start = time.time() # Create an intermediate topographic position calculation position_intermediate = os.path.splitext( position_output)[0] + '_intermediate.tif' topographic_position(elevation_input, position_intermediate) # Convert to integer values print(f'\t\tConverting values to integers...') integer_position = Int((Raster(position_intermediate) * 100) + 0.5) # Copy extracted raster to output print(f'\t\tCreating output raster...') arcpy.management.CopyRaster(integer_position, position_output, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Delete intermediate dataset if possible try: arcpy.management.Delete(position_intermediate) except: print('\t\tCould not delete intermediate dataset...') # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tTopographic position already exists for {grid_title}.') print('\t----------') #### CALCULATE TOPOGRAPHIC RADIATION # Calculate topographic radiation if it does not already exist if arcpy.Exists(radiation_output) == 0: print(f'\tCalculating topographic radiation for {grid_title}...') iteration_start = time.time() # Create an intermediate topographic position calculation radiation_intermediate = os.path.splitext( radiation_output)[0] + '_intermediate.tif' radiation_integer = os.path.splitext( radiation_output)[0] + '_integer.tif' topographic_radiation(elevation_input, radiation_intermediate) # Convert to integer values print(f'\t\tConverting values to integers...') integer_radiation = Int((Raster(radiation_intermediate) * 1000) + 0.5) arcpy.management.CopyRaster(integer_radiation, radiation_integer, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # Extract filled raster to grid mask print(f'\t\tExtracting integer raster to grid...') extract_radiation = ExtractByMask(radiation_integer, grid_raster) # Copy extracted raster to output print(f'\t\tCreating output raster...') arcpy.management.CopyRaster(extract_radiation, radiation_output, '', '', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Delete intermediate dataset if possible try: arcpy.management.Delete(radiation_intermediate) arcpy.management.Delete(radiation_integer) except: print('\t\tCould not delete intermediate dataset...') # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') else: print(f'\tTopographic radiation already exists for {grid_title}.') print('\t----------') outprocess = f'Finished topographic properties for {grid_title}.' return outprocess
def evi_raster_shrink(evi_raster_path, feature_points_path, radius): if not os.path.exists(os.path.join(env.workspace, "feature_points_buffer.shp")): arcpy.Buffer_analysis(feature_points_path, "feature_points_buffer", radius, dissolve_option="ALL") out_raster = ExtractByMask(evi_raster_path, "feature_points_buffer.shp") out_raster.save("evi_raster_shrink.tif") return out_raster
def extract_by_mask(in_raster, in_mask): out_raster = ExtractByMask(in_raster, in_mask) return out_raster
def IceCliffLocation(workspace,dem,tileDebarea,pixel,skinny,minSlope,n_iterations,L_e,alpha,beta_e,A_min,phi,gamma): import sys import os import arcpy from arcpy import env from arcpy.sa import Slope, ExtractByMask, Raster, SetNull, Int import matplotlib.pyplot as plt import numpy as np from numpy import array from scipy.optimize import curve_fit env.overwriteOutput = True try: import arcinfo except: sys.exit("ArcInfo license not available") arcpy.AddMessage("ArcInfo license not available") if arcpy.CheckExtension("spatial") == "Available": arcpy.CheckOutExtension("spatial") else: sys.exit("Spatial Analyst license not available") arcpy.AddMessage("Spatial Analyst license not available") #Parameters that should be stable: slopeLimit = 90 # slope detection capped at this value ## Loop for optimizing slope if str(workspace.split("\\")[-1]) == 'Final': n = [] n.append(minSlope) else: minSlope = 0 n = np.arange(minSlope,slopeLimit,(slopeLimit-minSlope)/n_iterations) skipIteration = [] for minSlope in n: # check for existing iterations if code has previously run but crashed. if arcpy.ListFeatureClasses("*cliffMap*"): fcListPrior = arcpy.ListFeatureClasses("*cliffMap*") skipIteration = [] for prior_i in fcListPrior: if int(prior_i[14:16]) == int("%02d" % (int(minSlope),)): skipIteration = 1 if skipIteration == 1: continue ## Ice Cliff code if skinny == 'false': print 'IceCliffLocation script started...' if skinny == 'true': print 'skinny IceCliffLocation script started...' # Parameter that probably should be 0 minProb = 0 # probability associated with minSlope. arcpy.CopyFeatures_management(tileDebarea, workspace+"\\del_debarea.shp") debarea_iteration = workspace+"\\del_debarea.shp" arcpy.env.snapRaster = dem outExtractSlope = ExtractByMask(dem, debarea_iteration) outExtractSlope.save("dem_extract.TIF") if int(round(float(str(arcpy.GetRasterProperties_management(dem, "CELLSIZEX"))))) == pixel: dem = "dem_extract.TIF" else: arcpy.Resample_management("dem_extract.TIF", "dem_extractResample.TIF", pixel, "NEAREST") arcpy.env.snapRaster = dem print "DEM resampeld from "+str(int(round(float(str(arcpy.GetRasterProperties_management(dem, "CELLSIZEX"))))))+' to '+str(pixel) dem = "dem_extractResample.TIF" # Create slope raster outSlope = Slope(dem, "DEGREE", 1) outSlope.save("del_slope.TIF") # Isolate slope values above minSlope outSetNull = SetNull("del_slope.TIF", "del_slope.TIF", "VALUE <= "+ str(minSlope)) outSetNull.save("del_minSlope.TIF") # Exit process if no cliffs exist nocliff = arcpy.GetRasterProperties_management(Int("del_minSlope.TIF"), "ALLNODATA") if int(str(nocliff)) == 1: print "No area with a slope above "+str(minSlope)+"." elif float(str(arcpy.GetRasterProperties_management('del_minSlope.TIF',"MAXIMUM"))) - float(str(arcpy.GetRasterProperties_management('del_minSlope.TIF',"MINIMUM"))) == 0: print "Only one pixel with a slope above "+str(minSlope)+", iteration skipped." else: minMean = float(str(arcpy.GetRasterProperties_management("del_minSlope.TIF", "MEAN"))) minSD = float(str(arcpy.GetRasterProperties_management("del_minSlope.TIF", "STD"))) areaSlope = minMean print 'areaSlope = ' + str(areaSlope) # Isolate slope values above areaSlope outSetNull = SetNull("del_slope.TIF", "del_slope.TIF", "VALUE <= "+ str(areaSlope)) outSetNull.save("del_areaSlope.TIF") arcpy.env.snapRaster = dem # Exit process if no cliffs exist nocliff = arcpy.GetRasterProperties_management(Int("del_areaSlope.TIF"), "ALLNODATA") if int(str(nocliff)) == 1: print "No area with a slope above "+str(areaSlope)+"." elif float(str(arcpy.GetRasterProperties_management("del_areaSlope.TIF","MAXIMUM"))) - float(str(arcpy.GetRasterProperties_management("del_areaSlope.TIF","MINIMUM"))) == 0: print "Only one pixel with a slope above "+str(areaSlope)+", iteration skipped." else: seedSlope = minMean+minSD print 'seedSlope = ' + str(seedSlope) # Isolate slope values above areaSlope outSetNull = SetNull("del_slope.TIF", "del_slope.TIF", "VALUE <= "+ str(seedSlope)) outSetNull.save("del_seedSlope.TIF") # Exit process if no cliffs exist nocliff = arcpy.GetRasterProperties_management(Int("del_seedSlope.TIF"), "ALLNODATA") if int(str(nocliff)) == 1: print "No seed area with a slope above "+str(seedSlope)+"." else: # to int speeds up computation time outInt = Int("del_areaSlope.TIF") outInt.save("del_minSlopeInt.TIF") outInt = Int("del_seedSlope.TIF") outInt.save("del_seedSlopeInt.TIF") arcpy.RasterToPolygon_conversion("del_minSlopeInt.TIF", "del_minCliffSlope.shp", "NO_SIMPLIFY", "VALUE") arcpy.AddField_management("del_minCliffSlope.shp", "value", "SHORT", 1, "", "", "", "", "") arcpy.Dissolve_management("del_minCliffSlope.shp", "del_minCliff_dissolve.shp", "value") arcpy.MultipartToSinglepart_management("del_minCliff_dissolve.shp", "del_minCliff_explode.shp") arcpy.AddField_management("del_minCliff_explode.shp",'Area','FLOAT') rows = arcpy.UpdateCursor("del_minCliff_explode.shp") for row in rows: areacliff = row.shape.area row.Area = areacliff rows.updateRow(row) del row, rows arcpy.CopyFeatures_management("del_minCliff_explode.shp", "min"+str("%02d" % (minSlope,))+"_CliffArea.shp") # skinny/non-skinny fix for ending iteration. 0 = no skip, 1 = skip skip_iter = 0 # skinny ice cliffs, does not include ice cliff end extension to speed up computations if skinny == 'true': if arcpy.management.GetCount("del_minCliff_explode.shp")[0] == "0": skip_iter = 1 print "No area within del_minCliff_explode.shp, skinny iteration skipped." else: # "_FinalCliffShape.shp" and "_cliffArea.shp" are the same if skinny == true arcpy.CopyFeatures_management("del_minCliff_explode.shp", "min"+str("%02d" % (minSlope,))+"area"+str(int(areaSlope))+"_FinalCliffShape.shp") # copy working .shp, used below arcpy.CopyFeatures_management('del_minCliff_explode.shp', 'del_lineAndArea_area.shp') arcpy.CalculateAreas_stats('del_minCliff_explode.shp', 'del_lineAndArea_area.shp') arcpy.MakeFeatureLayer_management('del_lineAndArea_area.shp', 'tempLayer') expression = 'F_AREA <=' + str((pixel**2)*A_min) arcpy.SelectLayerByAttribute_management('tempLayer', 'NEW_SELECTION', expression) arcpy.DeleteFeatures_management('tempLayer') arcpy.Delete_management('tempLayer') if skinny == 'false': # buffer in/out area to break up attached features arcpy.Buffer_analysis("del_minCliff_explode.shp", "del_extendLineBuffer.shp", (pixel/2)-0.1, "FULL", "ROUND", "NONE") # Generate ice cliff centerlines from Voronoi cells if arcpy.management.GetCount("del_extendLineBuffer.shp")[0] == "0": arcpy.CreateFeatureclass_management(workspace, 'del_lineAndArea_area.shp', "POLYGON","del_minCliff_dissolve.shp") skip_iter = 1 print "No area within the criteria defined by seed area value "+str(seedSlope)+", iteration stopped before centerlines." else: arcpy.FeatureToLine_management("del_extendLineBuffer.shp","del_line.shp","","ATTRIBUTES") arcpy.Densify_edit("del_line.shp", "","5", "", "") arcpy.FeatureVerticesToPoints_management ("del_line.shp", "del_verti.shp", "ALL") arcpy.CreateThiessenPolygons_analysis("del_verti.shp","del_voronoiCells.shp" ,"ONLY_FID") arcpy.RepairGeometry_management("del_voronoiCells.shp") #use geodatabase here due to unexpected error: "Invalid Topology [Duplicate segment.]" arcpy.CreateFileGDB_management(workspace, "fGDB.gdb") fgdb = workspace+"\\fGDB.gdb" #arcpy.env.workspace = fgdb arcpy.Clip_analysis(workspace+"\\del_voronoiCells.shp", workspace+"\\del_extendLineBuffer.shp", fgdb+"\\shp","") arcpy.FeatureToLine_management(fgdb+"\\shp", workspace+"\\del_toLine.shp", "", attributes="ATTRIBUTES") arcpy.Delete_management(fgdb) #arcpy.env.workspace = workspace #arcpy.FeatureToLine_management("del_voronoiCellsClip.shp","del_toLine.shp", "", attributes="ATTRIBUTES") arcpy.MakeFeatureLayer_management("del_toLine.shp", "tempLayer", "", "", "") arcpy.SelectLayerByLocation_management("tempLayer", "CROSSED_BY_THE_OUTLINE_OF","del_minCliff_explode.shp","","NEW_SELECTION") arcpy.DeleteFeatures_management("tempLayer") arcpy.Delete_management("tempLayer") arcpy.Intersect_analysis(["del_toLine.shp",'del_minCliff_explode.shp'],"del_lineIntersect.shp") arcpy.Dissolve_management("del_lineIntersect.shp", "del_toLineDis.shp", "", "", "SINGLE_PART", "DISSOLVE_LINES") arcpy.UnsplitLine_management("del_toLineDis.shp","del_unsplit.shp","Id") arcpy.MakeFeatureLayer_management("del_unsplit.shp", "tempLayer2", "", "", "") arcpy.SelectLayerByLocation_management("tempLayer2", "BOUNDARY_TOUCHES","del_minCliff_explode.shp","","NEW_SELECTION") arcpy.DeleteFeatures_management("tempLayer2") arcpy.Delete_management("tempLayer2") arcpy.cartography.SimplifyLine("del_unsplit.shp","del_clineSimpExp.shp","POINT_REMOVE",10) arcpy.AddField_management("del_clineSimpExp.shp", "value", "SHORT", 1, "", "", "", "", "") arcpy.Dissolve_management("del_clineSimpExp.shp", "del_clineSimp.shp", "value") arcpy.TrimLine_edit("del_clineSimp.shp", "8 meters", "KEEP_SHORT") arcpy.CopyFeatures_management("del_unsplit.shp", "min"+str("%02d" % (minSlope,))+"_Centerlines.shp") #refine centerline for final map if arcpy.management.GetCount("del_clineSimp.shp")[0] == "0": arcpy.CreateFeatureclass_management(workspace, 'del_lineAndArea_area.shp', "POLYGON","del_minCliff_dissolve.shp") skip_iter = 1 print "No area big enough to generate a centerline, iteration skipped." else: # extend lines to capture cliff ends count = 0 print "Extend line started..." jlist = [(pixel/2)-0.1] * int(round(L_e/(pixel/2))) for j in jlist: #create buffer out to set the limit a line will be extended to arcpy.Buffer_analysis("del_clineSimp.shp", "del_clineSimpBuff1.shp", j, "FULL", "ROUND", "ALL") arcpy.PolygonToLine_management("del_clineSimpBuff1.shp","del_clineSimpBuff1line.shp") #merge centerline and bufferline arcpy.Merge_management(["del_clineSimp.shp","del_clineSimpBuff1line.shp"], "del_clineSimpBuff1merge_dis.shp") arcpy.Delete_management("del_clineSimp.shp") print "Extend line "+str(count)+" started..." arcpy.MultipartToSinglepart_management("del_clineSimpBuff1merge_dis.shp", "del_clineSimpBuff1merge.shp") arcpy.MakeFeatureLayer_management("del_clineSimpBuff1merge.shp", "lineLayer", "", "", "") arcpy.SelectLayerByLocation_management("lineLayer", "SHARE_A_LINE_SEGMENT_WITH", "del_clineSimpBuff1.shp", "", "NEW_SELECTION", "INVERT") arcpy.ExtendLine_edit("del_clineSimpBuff1merge.shp", str(j+1)+" meters", "EXTENSION") #select share a line segment with buffer to remove buffer arcpy.SelectLayerByLocation_management("lineLayer", "SHARE_A_LINE_SEGMENT_WITH", "del_clineSimpBuff1.shp", "", "NEW_SELECTION") arcpy.DeleteFeatures_management("lineLayer") arcpy.Delete_management("lineLayer") arcpy.CopyFeatures_management("del_clineSimpBuff1merge.shp", "del_clineSimp.shp") arcpy.Delete_management("del_clineSimpBuff1.shp") arcpy.Delete_management("del_clineSimpBuff1line.shp") arcpy.Delete_management("del_clineSimpBuff1merge.shp") count = count + j del j, jlist #remove last short ribs with a lenght threhold then reattach centerlines that may have been split # calculate lenght of each centerline if arcpy.management.GetCount("del_clineSimp.shp")[0] == "0": arcpy.CreateFeatureclass_management(workspace, 'del_lineAndArea_area.shp', "POLYGON","del_minCliff_explode.shp") skip_iter = 1 print "Centerline shape empty, iteration skipped." else: arcpy.AddField_management("del_clineSimp.shp",'L','FLOAT') rows = arcpy.UpdateCursor("del_clineSimp.shp") for row in rows: areacliff = row.shape.length row.L = areacliff rows.updateRow(row) del row, rows arcpy.CopyFeatures_management("del_clineSimp.shp", "min"+str("%02d" % (minSlope,))+"_extendedCenterlines.shp") # buffer out centerlines to capture end area removed in earlier buffer arcpy.Buffer_analysis("del_clineSimp.shp", "del_CliffCenterlineOut.shp", ((alpha*pixel*(2**(1/2)))/2), "FULL", "ROUND", "NONE") # define area with a slope less than that which defined "del_minCliff_dissolve.shp" edgeAreaSlope = areaSlope-beta_e print "Edge area defined by slope "+str(edgeAreaSlope) outSetNull = SetNull("del_slope.TIF", "del_slope.TIF", "VALUE <= "+ str(edgeAreaSlope)) outSetNull.save("del_edgeSlope.TIF") outInt = Int("del_edgeSlope.TIF") outInt.save("del_edgeSlopeInt.TIF") arcpy.RasterToPolygon_conversion("del_edgeSlopeInt.TIF", "del_edgeAreaSlope.shp", "NO_SIMPLIFY", "VALUE") arcpy.AddField_management("del_edgeAreaSlope.shp", "value", "SHORT", 1, "", "", "", "", "") arcpy.Dissolve_management("del_edgeAreaSlope.shp", "del_edgeAreaSlope_dissolve.shp", "value") arcpy.CopyFeatures_management("del_edgeAreaSlope_dissolve.shp", "min"+str("%02d" % (minSlope,))+"_edgeArea.shp") arcpy.Intersect_analysis (["del_edgeAreaSlope_dissolve.shp", "del_CliffCenterlineOut.shp"], "del_betaF_edgeArea.shp") # merge buffered lines with buffered area arcpy.Merge_management(["del_betaF_edgeArea.shp", "del_minCliff_explode.shp"], "del_lineAndArea.shp") arcpy.AddField_management("del_lineAndArea.shp", "valueDis", "SHORT", 1, "", "", "", "", "") arcpy.Dissolve_management("del_lineAndArea.shp", "del_lineAndArea_dissolve1.shp", "valueDis") arcpy.RepairGeometry_management("del_lineAndArea_dissolve1.shp") # fill holes and remove shapes less than one pixel to avoid error from buffer tool arcpy.MultipartToSinglepart_management("del_lineAndArea_dissolve1.shp", "del_lineAndArea_explode1.shp") arcpy.CalculateAreas_stats("del_lineAndArea_explode1.shp", 'del_lineAndArea_area1.shp') arcpy.MakeFeatureLayer_management('del_lineAndArea_area1.shp', 'tempLayer') expression = 'F_AREA <' + str(pixel**2) # m2 arcpy.SelectLayerByAttribute_management('tempLayer', 'NEW_SELECTION', expression) arcpy.DeleteFeatures_management('tempLayer') arcpy.Delete_management('tempLayer') arcpy.cartography.AggregatePolygons('del_lineAndArea_area1.shp', "del_lineAndArea_dissolve.shp", 1, 0, pixel**2, 'NON_ORTHOGONAL') arcpy.RepairGeometry_management("del_lineAndArea_dissolve.shp") # buffer in to reomve sliver geometries and out to make a diagonal set of single pixel shapes one feature arcpy.Buffer_analysis("del_lineAndArea_dissolve.shp", "del_lineAndArea_dissolveSmallBufferIn.shp", -0.5, "FULL", "ROUND", "ALL") arcpy.Buffer_analysis("del_lineAndArea_dissolveSmallBufferIn.shp", "del_lineAndArea_dissolveSmallBuffer.shp", 1, "FULL", "ROUND", "ALL") arcpy.MultipartToSinglepart_management("del_lineAndArea_dissolveSmallBuffer.shp", "del_lineAndArea_explode.shp") arcpy.CalculateAreas_stats('del_lineAndArea_explode.shp', 'del_lineAndArea_area.shp') arcpy.MakeFeatureLayer_management('del_lineAndArea_area.shp', 'tempLayer') expression = 'F_AREA <=' + str((pixel**2)*A_min) arcpy.SelectLayerByAttribute_management('tempLayer', 'NEW_SELECTION', expression) arcpy.DeleteFeatures_management('tempLayer') arcpy.Delete_management('tempLayer') if arcpy.management.GetCount("del_lineAndArea_area.shp")[0] == "0": print "del_lineAndArea_area.shp empty, iteration stopped." skip_iter = 1 else: arcpy.AddField_management("del_lineAndArea_area.shp", "value", "SHORT", 1, "", "", "", "", "") arcpy.CopyFeatures_management('del_lineAndArea_area.shp', "min"+str("%02d" % (minSlope,))+"area"+str(int(areaSlope))+"_FinalCliffShape.shp") if skip_iter == 0: # CDF for values between minSlope and maxSlope outSetNull = SetNull("del_slope.TIF", "del_slope.TIF", "VALUE >= "+ str(minSlope)) outSetNull.save("del_min.TIF") arcpy.RasterToFloat_conversion("del_min.TIF", "del_min.flt") minsl = Raster('del_min.flt') slopemin = minsl*0.0 slopemin.save('del_minSl.TIF') outSetNull = SetNull("del_slope.TIF", "del_slope.TIF", "VALUE > "+ str(seedSlope)) outSetNull = SetNull(outSetNull, outSetNull, "VALUE < "+ str(minSlope)) outSetNull.save("del_mid.TIF") arcpy.RasterToFloat_conversion("del_mid.TIF", "del_mid.flt") midsl = Raster('del_mid.flt') b = (1-(((1-minProb)/(seedSlope-minSlope))*seedSlope)) slopemid = (((1-minProb)/(seedSlope-minSlope))*midsl)+b arcpy.env.snapRaster = dem slopemid.save('del_midSl.TIF') arcpy.env.snapRaster = dem outSetNull = SetNull("del_slope.TIF", "del_slope.TIF", "VALUE <= "+ str(seedSlope)) outSetNull.save("del_max.TIF") arcpy.RasterToFloat_conversion("del_max.TIF", "del_max.flt") maxsl = Raster('del_max.flt') slopemax = maxsl*0.0+1.0 arcpy.env.snapRaster = dem slopemax.save('del_maxSl.TIF') arcpy.env.snapRaster = dem arcpy.MosaicToNewRaster_management("del_minSl.TIF;del_midSl.TIF;del_maxSl.TIF", workspace, "del_cliffProbabilitySlope.TIF", "", "32_BIT_FLOAT", "", "1", "LAST","FIRST") arcpy.env.snapRaster = dem # extract cliff probability and apply reduction factor to area outside of buffer.shp if arcpy.management.GetCount("del_lineAndArea_area.shp")[0] == "0": print "del_lineAndArea_area.shp is empty, did not create: CliffProbability_betai" + str("%02d" % (int(minSlope),)) + "betaA" + str(int(areaSlope))+".TIF" else: outExtractSlope = ExtractByMask("del_cliffProbabilitySlope.TIF", "del_lineAndArea_area.shp") outExtractSlope.save("del_final_cliffs_found.TIF") arcpy.RasterToFloat_conversion("del_cliffProbabilitySlope.TIF", "del_CliffProbabilitySlope.flt") CliffProbabilitySlope = Raster('del_CliffProbabilitySlope.flt') CliffProbabilitySlopeREDUCED = CliffProbabilitySlope*phi arcpy.env.snapRaster = dem CliffProbabilitySlopeREDUCED.save('del_CliffProbabilitySlopeREDUCED.TIF') arcpy.MosaicToNewRaster_management("del_final_cliffs_found.TIF;del_CliffProbabilitySlopeREDUCED.TIF", workspace, "CliffProbability_betai" + str("%02d" % (int(minSlope),)) + "betaA" + str(int(areaSlope))+".TIF", "", "32_BIT_FLOAT", "", "1", "FIRST","FIRST") arcpy.env.snapRaster = dem del CliffProbabilitySlope del CliffProbabilitySlopeREDUCED del minsl del midsl del maxsl ## ---------------------------------- ## Compute percent cliff in total spatial domain cliff_area_sum = 0 debris_area_sum = 0 Perc_Cliff = 0 arcpy.CalculateAreas_stats(debarea_iteration, 'del_debris_area.shp') with arcpy.da.SearchCursor('del_debris_area.shp', ['F_AREA']) as cursor: for row in cursor: debris_area_sum += row[0] if os.path.isfile(workspace+'\\del_lineAndArea_area.shp') == False: print "'del_lineAndArea_area.shp'does not exist." elif arcpy.management.GetCount('del_lineAndArea_area.shp')[0] == "0": print "No area within 'del_lineAndArea_area.shp'." else: with arcpy.da.SearchCursor('del_lineAndArea_area.shp', ['F_AREA']) as cursor: for row in cursor: cliff_area_sum += row[0] Perc_Cliff = (cliff_area_sum/debris_area_sum)*100 arcpy.Dissolve_management("del_lineAndArea_area.shp", 'cliffMap_betai' + str("%02d" % (int(minSlope),)) + 'betaA' + str(int(areaSlope)) + '.shp', "value") arcpy.AddField_management('cliffMap_betai' + str("%02d" % (int(minSlope),)) + 'betaA' + str(int(areaSlope)) + '.shp','minSlope','FLOAT') arcpy.AddField_management('cliffMap_betai' + str("%02d" % (int(minSlope),)) + 'betaA' + str(int(areaSlope)) + '.shp','Area_Cliff','FLOAT') arcpy.AddField_management('cliffMap_betai' + str("%02d" % (int(minSlope),)) + 'betaA' + str(int(areaSlope)) + '.shp','Area_Deb','FLOAT') arcpy.AddField_management('cliffMap_betai' + str("%02d" % (int(minSlope),)) + 'betaA' + str(int(areaSlope)) + '.shp','Perc_Cliff','FLOAT') rows = arcpy.UpdateCursor('cliffMap_betai' + str("%02d" % (int(minSlope),)) + 'betaA' + str(int(areaSlope)) + '.shp') for row in rows: row.setValue('Area_Cliff', cliff_area_sum) row.setValue('Area_Deb', debris_area_sum) row.setValue('minSlope', minSlope) row.setValue('Perc_Cliff', Perc_Cliff) rows.updateRow(row) del row, rows print 'IceCliffLocation script [minSlope: ' + str("%02d" % (int(minSlope),)) + ' areaSlope: ' + str(int(areaSlope))+ '] done...' rasterList = arcpy.ListRasters("*del*") for raster in rasterList: arcpy.Delete_management(raster) del raster del rasterList fcList = arcpy.ListFeatureClasses("*del*") for fc in fcList: arcpy.Delete_management(fc) del fc del fcList print "intermediate files deleted" del minSlope del n if str(workspace.split("\\")[-1]) == 'Final': print "Script complete" else: initialSlope_doubles = [] percentCliffs_doubles = [] initialSlope = [] percentCliffs = [] xfit = [] yfit = [] fcList = [] arr = [] fcList = arcpy.ListFeatureClasses("*cliffMap*") arcpy.Merge_management(fcList, "mergedSolutions.shp") arr = arcpy.da.TableToNumPyArray("mergedSolutions.shp", ('Perc_Cliff','minSlope')) arcpy.Delete_management("del_mergedSolutions.shp") initialSlope_doubles = [row[1] for row in arr] percentCliffs_doubles = [row[0] for row in arr] #remove rows that are repeated due to (possible) earlier tiled dissolve from insufficient memory for i,j in enumerate(initialSlope_doubles): if j != initialSlope_doubles[(i-1) % len(initialSlope_doubles)]: initialSlope.append(j) del i,j for i,j in enumerate(percentCliffs_doubles): if j != percentCliffs_doubles[(i-1) % len(percentCliffs_doubles)]: percentCliffs.append(j) del i,j def func(x,a,b,c): return a*np.exp(-((x-b)/c)**2) try: popt, pcov = curve_fit(func,initialSlope,percentCliffs, maxfev=1000) except RuntimeError: fig = plt.figure() ax1 = fig.add_subplot(111) ax1.plot(initialSlope, percentCliffs, 'ko');plt.draw() fig.show() print("Error - curve_fit failed") xfit = np.linspace(min(initialSlope), max(initialSlope), 100) yfit = popt[0]*np.exp(-((xfit-popt[1])/popt[2])**2) def secondDer(x): return popt[0]*(((4*(x-popt[1])**2*np.exp(-(x-popt[1])**2/popt[2]**2))/popt[2]**4)-((2*np.exp(-(x-popt[1])**2/popt[2]**2))/popt[2]**2)) a1 = [] a1 = [i for i in xrange(91)] a2 = secondDer(a1) #the next 3 for loops and a[x] variables define 1 of the 2 points to derive the optimization line. a3 = [] a4 = [] # values of second derivative where slope is below 'gamma' for i, j in enumerate(a2): if j <= gamma: a3.append(i) == i # find the steepest point (in the middle of the side of the bell) for i, j in enumerate(a2): if j == max(a2): m=i # take only values to the right of 'm' in case the curve is flat at 0 slope for i in a3: if i > m: a4.append(i) == i del i,j ax = min(a4) ay = popt[0]*np.exp(-((ax-popt[1])/popt[2])**2) #find max of bell for first point in optmization line yfit_array = array(yfit) ftup = (np.where(yfit_array == max(yfit_array))) f = int(ftup[0]) # x,y index of max yfit # d = distance from fit Equation 2 (Herreid and Pellicciotti, 2018) to line definded by ((xfit[0],yfit[0]),(ax,yx)) d = abs((yfit[f]-ay)*xfit-(xfit[f]-ax)*yfit+xfit[f]*ay-yfit[f]*ax)/((yfit[f]-ay)**2+(xfit[f]-ax)**2)**(1/2) # crit is the index of the longest d crit = np.where(d == max(d)) m = (yfit[f]-ay)/(xfit[f]-ax) b = yfit[f]-m*xfit[f] x_crit = (xfit[crit]+m*yfit[crit]-m*b)/(m**2+1) y_crit = m*((xfit[crit]+m*yfit[crit]-m*b)/(m**2+1))+b fig = plt.figure() ax1 = fig.add_subplot(111) ax1.plot(initialSlope, percentCliffs, 'ko'); plt.plot([xfit[f],ax],[yfit[f],ay]); plt.plot([xfit[crit],x_crit],[yfit[crit],y_crit]); plt.plot(xfit,yfit);plt.xlim(0, 100);plt.ylim(0, 100);plt.gca().set_aspect('equal', adjustable='box');plt.draw() ax1.set_xlabel(r'$\mathrm{\beta_i (^\circ)}$') ax1.set_ylabel('Ice cliff fraction (%)') fig.show() #fig.canvas.flush_events() import time time.sleep(1) #plt.pause(0.01) #plt.waitforbuttonpress() #save data used to make figure np.save(workspace+'\\figureData', (initialSlope, percentCliffs,[xfit[f],ax],[yfit[f],ay],[xfit[crit],x_crit],[yfit[crit],y_crit],xfit,yfit)) IceCliffLocation.minSlope = float(xfit[crit])
def merge_spectral_tiles(**kwargs): """ Description: extracts spectral tiles to an area and mosaics extracted tiles with first data priority Inputs: 'cell_size' -- a cell size for the output spectral raster 'output_projection' -- the machine number for the output projection 'work_geodatabase' -- a geodatabase to store temporary results 'input_array' -- an array containing the grid raster (must be first), the study area raster (must be second), and the list of spectral tiles 'output_array' -- an array containing the output spectral grid raster Returned Value: Returns a raster dataset on disk containing the merged spectral grid raster Preconditions: requires processed source spectral tiles and predefined grid """ # Import packages import arcpy from arcpy.sa import ExtractByMask from arcpy.sa import IsNull from arcpy.sa import Nibble from arcpy.sa import Raster from arcpy.sa import SetNull import datetime import os import time # Parse key word argument inputs cell_size = kwargs['cell_size'] output_projection = kwargs['output_projection'] work_geodatabase = kwargs['work_geodatabase'] tile_inputs = kwargs['input_array'] grid_raster = tile_inputs.pop(0) study_area = tile_inputs.pop(0) spectral_grid = kwargs['output_array'][0] # Set overwrite option arcpy.env.overwriteOutput = True # Use two thirds of cores on processes that can be split. arcpy.env.parallelProcessingFactor = "75%" # Set snap raster and extent arcpy.env.snapRaster = study_area arcpy.env.extent = Raster(grid_raster).extent # Define the output coordinate system output_system = arcpy.SpatialReference(output_projection) # Define intermediate rasters mosaic_raster = os.path.splitext(spectral_grid)[0] + '_mosaic.tif' nibble_raster = os.path.splitext(spectral_grid)[0] + '_nibble.tif' spectral_area = os.path.splitext(spectral_grid)[0] + '_area.tif' # Define folder structure grid_title = os.path.splitext(os.path.split(grid_raster)[1])[0] mosaic_location, mosaic_name = os.path.split(mosaic_raster) # Create source folder within mosaic location if it does not already exist source_folder = os.path.join(mosaic_location, 'sources') if os.path.exists(source_folder) == 0: os.mkdir(source_folder) # Create an empty list to store existing extracted source rasters for the grid input_length = len(tile_inputs) input_rasters = [] # Identify raster extent of grid print(f'\tExtracting {input_length} spectral tiles...') grid_extent = Raster(grid_raster).extent grid_array = arcpy.Array() grid_array.add(arcpy.Point(grid_extent.XMin, grid_extent.YMin)) grid_array.add(arcpy.Point(grid_extent.XMin, grid_extent.YMax)) grid_array.add(arcpy.Point(grid_extent.XMax, grid_extent.YMax)) grid_array.add(arcpy.Point(grid_extent.XMax, grid_extent.YMin)) grid_array.add(arcpy.Point(grid_extent.XMin, grid_extent.YMin)) grid_polygon = arcpy.Polygon(grid_array) # Save grid polygon grid_feature = os.path.join(work_geodatabase, 'grid_polygon') arcpy.management.CopyFeatures(grid_polygon, grid_feature) arcpy.management.DefineProjection(grid_feature, output_system) # Iterate through all input tiles and extract to grid if they overlap count = 1 for raster in tile_inputs: output_raster = os.path.join(source_folder, os.path.split(raster)[1]) if os.path.exists(output_raster) == 0: # Identify raster extent of tile tile_extent = Raster(raster).extent tile_array = arcpy.Array() tile_array.add(arcpy.Point(tile_extent.XMin, tile_extent.YMin)) tile_array.add(arcpy.Point(tile_extent.XMin, tile_extent.YMax)) tile_array.add(arcpy.Point(tile_extent.XMax, tile_extent.YMax)) tile_array.add(arcpy.Point(tile_extent.XMax, tile_extent.YMin)) tile_array.add(arcpy.Point(tile_extent.XMin, tile_extent.YMin)) tile_polygon = arcpy.Polygon(tile_array) # Save tile polygon tile_feature = os.path.join(work_geodatabase, 'tile_polygon') arcpy.CopyFeatures_management(tile_polygon, tile_feature) arcpy.DefineProjection_management(tile_feature, output_system) # Select tile extent with grid extent selection = int( arcpy.GetCount_management( arcpy.management.SelectLayerByLocation( tile_feature, 'INTERSECT', grid_feature, '', 'NEW_SELECTION', 'NOT_INVERT')).getOutput(0)) # If tile overlaps grid then perform extraction if selection == 1: # Extract raster to mask print( f'\t\tExtracting spectral tile {count} of {input_length}...' ) iteration_start = time.time() extract_raster = ExtractByMask(raster, grid_raster) # Copy extracted raster to output print(f'\t\tSaving spectral tile {count} of {input_length}...') arcpy.management.CopyRaster(extract_raster, output_raster, '', '0', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE', 'CURRENT_SLICE', 'NO_TRANSPOSE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\t\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t\t----------') # If tile does not overlap grid then report message else: print( f'\t\tSpectral tile {count} of {input_length} does not overlap grid...' ) print('\t\t----------') # Remove tile feature class if arcpy.Exists(tile_feature) == 1: arcpy.management.Delete(tile_feature) # If extracted tile already exists then report message else: print( f'\t\tExtracted spectral tile {count} of {input_length} already exists...' ) print('\t\t----------') # If the output raster exists then append it to the raster list if os.path.exists(output_raster) == 1: input_rasters.append(output_raster) count += 1 # Remove grid feature if arcpy.Exists(grid_feature) == 1: arcpy.management.Delete(grid_feature) print(f'\tFinished extracting {input_length} spectral tiles.') print('\t----------') # Mosaic raster tiles to new raster print(f'\tMosaicking the input rasters for {grid_title}...') iteration_start = time.time() arcpy.management.MosaicToNewRaster(input_rasters, mosaic_location, mosaic_name, output_system, '16_BIT_SIGNED', cell_size, '1', 'MAXIMUM', 'FIRST') # Enforce correct projection arcpy.management.DefineProjection(mosaic_raster, output_system) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') # Calculate the missing area print('\tCalculating null space...') iteration_start = time.time() raster_null = SetNull(IsNull(Raster(mosaic_raster)), 1, 'VALUE = 1') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') # Impute missing data by nibbling the NoData from the focal mean print('\tImputing missing values by geographic nearest neighbor...') iteration_start = time.time() raster_filled = Nibble(Raster(mosaic_raster), raster_null, 'DATA_ONLY', 'PROCESS_NODATA', '') # Copy nibble raster to output print(f'\tSaving filled raster...') arcpy.management.CopyRaster(raster_filled, nibble_raster, '', '0', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE', 'CURRENT_SLICE', 'NO_TRANSPOSE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') # Remove overflow fill from the study area print('\tRemoving overflow fill from study area...') iteration_start = time.time() raster_preliminary = ExtractByMask(nibble_raster, study_area) # Copy preliminary extracted raster to output arcpy.management.CopyRaster(raster_preliminary, spectral_area, '', '0', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE', 'CURRENT_SLICE', 'NO_TRANSPOSE') # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') # Remove overflow fill from the grid print('\tRemoving overflow fill from grid...') iteration_start = time.time() raster_final = ExtractByMask(spectral_area, grid_raster) arcpy.management.CopyRaster(raster_final, spectral_grid, '', '0', '-32768', 'NONE', 'NONE', '16_BIT_SIGNED', 'NONE', 'NONE', 'TIFF', 'NONE', 'CURRENT_SLICE', 'NO_TRANSPOSE') # Delete intermediate rasters if arcpy.Exists(mosaic_raster) == 1: arcpy.management.Delete(mosaic_raster) if arcpy.Exists(nibble_raster) == 1: arcpy.management.Delete(nibble_raster) if arcpy.Exists(spectral_area) == 1: arcpy.management.Delete(spectral_area) # End timing iteration_end = time.time() iteration_elapsed = int(iteration_end - iteration_start) iteration_success_time = datetime.datetime.now() # Report success print( f'\tCompleted at {iteration_success_time.strftime("%Y-%m-%d %H:%M")} (Elapsed time: {datetime.timedelta(seconds=iteration_elapsed)})' ) print('\t----------') out_process = f'Successfully created {os.path.split(spectral_grid)[1]}' return out_process
def CalculateVegetationHeight(MNH, emprise, idField, geodata, OutputFC): # Local variables: env.workspace = geodata # Process: Extraction par masque pathExtract = os.path.join(geodata, "EctractMNH") Extract_MNH = ExtractByMask(MNH, emprise) Extract_MNH.save(pathExtract) # Process: Raster vers points arcpy.RasterToPoint_conversion(Extract_MNH, "MNHPoint", "Value") # Process: Jointure spatiale # Création de l'objet fieldmappings fmap = arcpy.FieldMappings() # on ajoute les tables fmap.addTable("MNHPoint") fmap.addTable(emprise) # on cherche l'indice de la du grid_code et on créer un fieldmap pour chaque indice (mean, idexGridCode = fmap.findFieldMapIndex("grid_code") # On créer les fieldmap pour chaque colonne fieldMapGCmean = fmap.getFieldMap(idexGridCode) fieldMapGCmin = arcpy.FieldMap() fieldMapGCmin.addInputField("MNHPoint","grid_code") fieldMapGCmax = arcpy.FieldMap() fieldMapGCmax.addInputField("MNHPoint","grid_code") fieldMapGCmedian = arcpy.FieldMap() fieldMapGCmedian.addInputField("MNHPoint","grid_code") fieldMapGCstdv = arcpy.FieldMap() fieldMapGCstdv.addInputField("MNHPoint","grid_code") # On calcul le champ Min_height Minfld = fieldMapGCmin.outputField Minfld.name = "Min_height" Minfld.aliasName = "Min_height" fieldMapGCmin.outputField = Minfld fieldMapGCmin.mergeRule = "Min" fmap.addFieldMap(fieldMapGCmin) # On calcul le champ Max_Height Maxfld =fieldMapGCmax.outputField Maxfld.name = "Max_height" Maxfld.aliasName = "Max_height" fieldMapGCmax.outputField = Maxfld fieldMapGCmax.mergeRule = "Max" fmap.addFieldMap(fieldMapGCmax) # On calcul le champ Median_height MedianFld = fieldMapGCmedian.outputField MedianFld.name = "Med_height" MedianFld.aliasName = "Med_height" fieldMapGCmedian.outputField = MedianFld fieldMapGCmedian.mergeRule = "Median" fmap.addFieldMap(fieldMapGCmedian) # On calcul le champ stdv_height StdvFld = fieldMapGCstdv.outputField StdvFld.name= "Stdv_height" StdvFld.aliasName = "Stdv_height" fieldMapGCstdv.outputField=StdvFld fieldMapGCstdv.mergeRule="StdDev" fmap.addFieldMap(fieldMapGCstdv) # On calcul le champ Mean_height Meanfld = fieldMapGCmean.outputField Meanfld.name ="Mean_height" Meanfld.aliasName = "Mean_height" fieldMapGCmean.outputField = Meanfld fieldMapGCmean.mergeRule ="Mean" fmap.replaceFieldMap(idexGridCode, fieldMapGCmean) arcpy.SpatialJoin_analysis(emprise, "MNHPoint", OutputFC, "", "", fmap) # Process: Calculer un champ arcpy.AddField_management(OutputFC, "Variance_height", "DOUBLE") arcpy.CalculateField_management(OutputFC, "Variance_height", "[Stdv_height]*[Stdv_height]") # Delete Field: for fld in arcpy.ListFields(OutputFC): if fld.name not in [idField,"Min_height","Max_height","Med_height","Stdv_height","Mean_height","Join_Count","Variance_height"]: try: arcpy.DeleteField_management(OutputFC,fld.name) except: pass # Return outputFC return OutputFC