def fit(self, order=(1,0,1), **kwds): from arima_model import ARMA self.mod = ARMA(self.data) self.res = self.mod.fit(order=order, **kwds) #self.estimated_process = return self.res
def fit(self, order=(1, 0, 1), **kwds): from arima_model import ARMA self.mod = ARMA(self.data) self.res = self.mod.fit(order=order, **kwds) #self.estimated_process = return self.res
class TsaDescriptive(object): '''collection of descriptive statistical methods for time series ''' def __init__(self, data, label=None, name=''): self.data = data self.label = label self.name = name def filter(self, num, den): from scipy.signal import lfilter xfiltered = lfilter(num, den, self.data) return self.__class__(xfiltered, self.label, self.name + '_filtered') def detrend(self, order=1): import tsatools xdetrended = tsatools.detrend(self.data, order=order) return self.__class__(xdetrended, self.label, self.name + '_detrended') def fit(self, order=(1,0,1), **kwds): from arima_model import ARMA self.mod = ARMA(self.data) self.res = self.mod.fit(order=order, **kwds) #self.estimated_process = return self.res def acf(self, nlags=40): return stt.acf(self.data, nlags=nlags) def pacf(self, nlags=40): return stt.pacf(self.data, nlags=nlags) def periodogram(self): #doesn't return frequesncies return stt.periodogram(self.data) # copied from fftarma.py def plot4(self, fig=None, nobs=100, nacf=20, nfreq=100): data = self.data acf = self.acf(nacf) pacf = self.pacf(nacf) w = np.linspace(0, np.pi, nfreq, endpoint=False) spdr = self.periodogram()[:nfreq] #(w) if fig is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(2,2,1) namestr = ' for %s' % self.name if self.name else '' ax.plot(data) ax.set_title('Time series' + namestr) ax = fig.add_subplot(2,2,2) ax.plot(acf) ax.set_title('Autocorrelation' + namestr) ax = fig.add_subplot(2,2,3) ax.plot(spdr) # (wr, spdr) ax.set_title('Power Spectrum' + namestr) ax = fig.add_subplot(2,2,4) ax.plot(pacf) ax.set_title('Partial Autocorrelation' + namestr) return fig
class TsaDescriptive(object): '''collection of descriptive statistical methods for time series ''' def __init__(self, data, label=None, name=''): self.data = data self.label = label self.name = name def filter(self, num, den): from scipy.signal import lfilter xfiltered = lfilter(num, den, self.data) return self.__class__(xfiltered, self.label, self.name + '_filtered') def detrend(self, order=1): import tsatools xdetrended = tsatools.detrend(self.data, order=order) return self.__class__(xdetrended, self.label, self.name + '_detrended') def fit(self, order=(1, 0, 1), **kwds): from arima_model import ARMA self.mod = ARMA(self.data) self.res = self.mod.fit(order=order, **kwds) #self.estimated_process = return self.res def acf(self, nlags=40): return stt.acf(self.data, nlags=nlags) def pacf(self, nlags=40): return stt.pacf(self.data, nlags=nlags) def periodogram(self): #doesn't return frequesncies return stt.periodogram(self.data) # copied from fftarma.py def plot4(self, fig=None, nobs=100, nacf=20, nfreq=100): data = self.data acf = self.acf(nacf) pacf = self.pacf(nacf) w = np.linspace(0, np.pi, nfreq, endpoint=False) spdr = self.periodogram()[:nfreq] #(w) if fig is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(2, 2, 1) namestr = ' for %s' % self.name if self.name else '' ax.plot(data) ax.set_title('Time series' + namestr) ax = fig.add_subplot(2, 2, 2) ax.plot(acf) ax.set_title('Autocorrelation' + namestr) ax = fig.add_subplot(2, 2, 3) ax.plot(spdr) # (wr, spdr) ax.set_title('Power Spectrum' + namestr) ax = fig.add_subplot(2, 2, 4) ax.plot(pacf) ax.set_title('Partial Autocorrelation' + namestr) return fig