Пример #1
0
    def in1d(self, test: Union[Strings, Categorical]) -> pdarray:
        """
        Test whether each element of the Categorical object is 
        also present in the test Strings or Categorical object.

        Returns a boolean array the same length as `self` that is True
        where an element of `self` is in `test` and False otherwise.

        Parameters
        ----------
        test : Union[Strings,Categorical]
            The values against which to test each value of 'self`.

        Returns
        -------
        pdarray, bool
            The values `self[in1d]` are in the `test` Strings or Categorical object.
        
        Raises
        ------
        TypeError
            Raised if test is not a Strings or Categorical object

        See Also
        --------
        unique, intersect1d, union1d

        Notes
        -----
        `in1d` can be considered as an element-wise function version of the
        python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is logically
        equivalent to ``ak.array([item in b for item in a])``, but is much
        faster and scales to arbitrarily large ``a``.
    

        Examples
        --------
        >>> strings = ak.array(['String {}'.format(i) for i in range(0,5)])
        >>> cat = ak.Categorical(strings)
        >>> ak.in1d(cat,strings)
        array([True, True, True, True, True])
        >>> strings = ak.array(['String {}'.format(i) for i in range(5,9)])
        >>> catTwo = ak.Categorical(strings)
        >>> ak.in1d(cat,catTwo)
        array([False, False, False, False, False])
        """
        reset_cat = self if self.uses_all_categories else self.reset_categories(
        )
        if isinstance(test, Categorical):
            reset_test = test if test.uses_all_categories else test.reset_categories(
            )
            categoriesisin = in1d(reset_cat.categories, reset_test.categories)
        else:
            categoriesisin = in1d(reset_cat.categories, test)
        return categoriesisin[reset_cat.codes]
Пример #2
0
 def in1d(self, test):
     __doc__ = in1d.__doc__
     categoriesisin = in1d(self.categories, test)
     return categoriesisin[self.codes]
Пример #3
0
    def _binop(self, other: Union[Categorical, str_scalars],
               op: str_scalars) -> pdarray:
        """
        Executes the requested binop on this Categorical instance and returns 
        the results within a pdarray object.

        Parameters
        ----------
        other : Union[Categorical,str_scalars]
            the other object is a Categorical object or string scalar
        op : str_scalars
            name of the binary operation to be performed 
      
        Returns
        -------
        pdarray
            encapsulating the results of the requested binop      

        Raises
    -   -----
        ValueError
            Raised if (1) the op is not in the self.BinOps set, or (2) if the
            sizes of this and the other instance don't match
        RuntimeError
            Raised if a server-side error is thrown while executing the
            binary operation
        """
        if op not in self.BinOps:
            raise NotImplementedError("Categorical: unsupported operator: {}".\
                                      format(op))
        if np.isscalar(other) and resolve_scalar_dtype(other) == "str":
            idxresult = self.categories._binop(other, op)
            return idxresult[self.codes]
        if self.size != cast(Categorical, other).size:
            raise ValueError("Categorical {}: size mismatch {} {}".\
                             format(op, self.size, cast(Categorical,other).size))
        if isinstance(other, Categorical):
            if (self.categories.size
                    == other.categories.size) and (self.categories
                                                   == other.categories).all():
                # Because categories are identical, codes can be compared directly
                return self.codes._binop(other.codes, op)
            else:
                # Remap both codes to the union of categories
                union = unique(
                    concatenate((self.categories, other.categories),
                                ordered=False))
                newinds = arange(union.size)
                # Inds of self.categories in unioned categories
                selfnewinds = newinds[in1d(union, self.categories)]
                # Need a permutation and segments to broadcast new codes
                if self.permutation is None or self.segments is None:
                    g = GroupBy(self.codes)
                    self.permutation = g.permutation
                    self.segments = g.segments
                # Form new codes by broadcasting new indices for unioned categories
                selfnewcodes = broadcast(self.segments, selfnewinds, self.size,
                                         self.permutation)
                # Repeat for other
                othernewinds = newinds[in1d(union, other.categories)]
                if other.permutation is None or other.segments is None:
                    g = GroupBy(other.codes)
                    other.permutation = g.permutation
                    other.segments = g.segments
                othernewcodes = broadcast(other.segments, othernewinds,
                                          other.size, other.permutation)
                # selfnewcodes and othernewcodes now refer to same unioned categories
                # and can be compared directly
                return selfnewcodes._binop(othernewcodes, op)
        else:
            raise NotImplementedError(
                ("Operations between Categorical and " +
                 "non-Categorical not yet implemented. " +
                 "Consider converting operands to Categorical."))