Пример #1
0
def spin_difference_spectrum(spin_dr,
                             title=None,
                             ax=None,
                             out=None,
                             scatter=False,
                             **kwargs):
    if ax is None:
        _, ax = plt.subplots(figsize=(6, 4))

    try:
        as_intensity = to_intensity_polarization(spin_dr)
    except AssertionError:
        as_intensity = spin_dr
    intensity = as_intensity.intensity
    pol = as_intensity.polarization.copy(deep=True)

    if len(intensity.dims) == 1:
        inset_ax = inset_axes(ax, width="30%", height="5%", loc=1)
        coord = intensity.coords[intensity.dims[0]]
        points = np.array([coord.values, intensity.values]).T.reshape(-1, 1, 2)
        pol.values[np.isnan(pol.values)] = 0
        pol.values[pol.values > 1] = 1
        pol.values[pol.values < -1] = -1
        pol_colors = cm.get_cmap('RdBu')(pol.values[:-1])

        if scatter:
            pol_colors = cm.get_cmap('RdBu')(pol.values)
            ax.scatter(coord.values, intensity.values, c=pol_colors, s=1.5)
        else:
            segments = np.concatenate([points[:-1], points[1:]], axis=1)
            lc = LineCollection(segments, colors=pol_colors)

            ax.add_collection(lc)

        ax.set_xlim(coord.min().item(), coord.max().item())
        ax.set_ylim(0, intensity.max().item() * 1.15)
        ax.set_ylabel('ARPES Spectrum Intensity (arb.)')
        ax.set_xlabel(label_for_dim(spin_dr, dim_name=intensity.dims[0]))
        ax.set_title(title if title is not None else 'Spin Polarization')
        polarization_colorbar(inset_ax)

    if out is not None:
        savefig(out, dpi=400)
        plt.clf()
        return path_for_plot(out)
    else:
        plt.show()
Пример #2
0
def overlapped_stack_dispersion_plot(data: DataType, stack_axis=None, ax=None, title=None, out=None,
                                     max_stacks=100, use_constant_correction=False, transpose=False,
                                     negate=False, s=1, scale_factor=None, linewidth=1, palette=None, **kwargs):
    data = normalize_to_spectrum(data)

    if stack_axis is None:
        stack_axis = data.dims[0]

    other_axes = list(data.dims)
    other_axes.remove(stack_axis)
    other_axis = other_axes[0]

    stack_coord = data.coords[stack_axis]
    if len(stack_coord.values) > max_stacks:
        data = rebin(data, reduction=dict([[
            stack_axis, int(np.ceil(len(stack_coord.values) / max_stacks))]
        ]))

    fig = None
    if ax is None:
        fig, ax = plt.subplots(figsize=(7, 7))

    if title is None:
        title = '{} Stack'.format(data.S.label.replace('_', ' '))

    max_over_stacks = np.max(data.values)

    cvalues = data.coords[other_axis].values
    if scale_factor is None:
        maximum_deviation = -np.inf

        for _, marginal in data.T.iterate_axis(stack_axis):
            marginal_values = -marginal.values if negate else marginal.values
            marginal_offset, right_marginal_offset = marginal_values[0], marginal_values[-1]

            if use_constant_correction:
                true_ys = (marginal_values - marginal_offset)
            else:
                true_ys = (marginal_values - np.linspace(marginal_offset, right_marginal_offset, len(marginal_values)))

            maximum_deviation = np.max([maximum_deviation] + list(np.abs(true_ys)))

        scale_factor = 0.02 * (np.max(cvalues) - np.min(cvalues)) / maximum_deviation

    iteration_order = -1 # might need to fiddle with this in certain cases
    for coord_dict, marginal in list(data.T.iterate_axis(stack_axis))[::iteration_order]:
        coord_value = coord_dict[stack_axis]

        xs = cvalues
        marginal_values = -marginal.values if negate else marginal.values
        marginal_offset, right_marginal_offset = marginal_values[0], marginal_values[-1]

        if use_constant_correction:
            true_ys = (marginal_values - marginal_offset) / max_over_stacks
            ys = scale_factor * true_ys + coord_value
        else:
            true_ys = (marginal_values - np.linspace(marginal_offset, right_marginal_offset, len(marginal_values))) \
                      / max_over_stacks
            ys = scale_factor * true_ys + coord_value

        raw_colors = 'black'
        if palette:
            if isinstance(palette, str):
                palette = cm.get_cmap(palette)
            raw_colors = palette(np.abs(true_ys / max_over_stacks))

        if transpose:
            xs, ys = ys, xs

        if isinstance(raw_colors, str):
            plt.plot(xs, ys, linewidth=linewidth, color=raw_colors, **kwargs)
        else:
            plt.scatter(xs, ys, color=raw_colors, s=s, **kwargs)

    x_label = other_axis
    y_label = stack_axis

    if transpose:
        x_label, y_label = y_label, x_label

    ax.set_xlabel(label_for_dim(data, x_label))
    ax.set_ylabel(label_for_dim(data, y_label))

    ax.set_title(title)

    if out is not None:
        plt.savefig(path_for_plot(out), dpi=400)
        return path_for_plot(out)

    plt.show()

    return fig, ax
Пример #3
0
def stack_dispersion_plot(data: DataType, stack_axis=None, ax=None, title=None, out=None,
                          max_stacks=100, transpose=False,
                          use_constant_correction=False, correction_side=None,
                          color=None, c=None,
                          label=None,
                          shift=0,
                          no_scatter=False,
                          negate=False, s=1, scale_factor=None, linewidth=1, palette=None, zero_offset=False, uniform = False, **kwargs):
    data = normalize_to_spectrum(data)

    if stack_axis is None:
        stack_axis = data.dims[0]

    other_axes = list(data.dims)
    other_axes.remove(stack_axis)
    other_axis = other_axes[0]

    stack_coord = data.coords[stack_axis]
    if len(stack_coord.values) > max_stacks:
        data = rebin(data, reduction=dict([[
            stack_axis, int(np.ceil(len(stack_coord.values) / max_stacks))]
        ]))

    fig = None
    if ax is None:
        fig, ax = plt.subplots(figsize=(7, 7))

    if title is None:
        title = '{} Stack'.format(data.S.label.replace('_', ' '))

    max_over_stacks = np.max(data.values)

    cvalues = data.coords[other_axis].values
    if scale_factor is None:
        maximum_deviation = -np.inf

        for _, marginal in data.T.iterate_axis(stack_axis):
            marginal_values = -marginal.values if negate else marginal.values
            marginal_offset, right_marginal_offset = marginal_values[0], marginal_values[-1]

            if use_constant_correction:
                true_ys = (marginal_values - marginal_offset)
            elif zero_offset:
                true_ys = marginal_values 
            else:
                true_ys = (marginal_values - np.linspace(marginal_offset, right_marginal_offset, len(marginal_values)))

            maximum_deviation = np.max([maximum_deviation] + list(np.abs(true_ys)))

        scale_factor = 0.02 * (np.max(cvalues) - np.min(cvalues)) / maximum_deviation

    iteration_order = -1 # might need to fiddle with this in certain cases
    lim = [-np.inf, np.inf]
    labeled = False
    for i, (coord_dict, marginal) in enumerate(list(data.T.iterate_axis(stack_axis))[::iteration_order]):
        coord_value = coord_dict[stack_axis]

        xs = cvalues
        marginal_values = -marginal.values if negate else marginal.values
        marginal_offset, right_marginal_offset = marginal_values[0], marginal_values[-1]

        if use_constant_correction:
            offset = right_marginal_offset if correction_side == 'right' else marginal_offset
            true_ys = (marginal_values - offset) / max_over_stacks
            ys = scale_factor * true_ys + coord_value
        elif zero_offset:
            true_ys = marginal_values / max_over_stacks
            ys = scale_factor * true_ys + coord_value
        elif uniform:
            true_ys = marginal_values / max_over_stacks
            ys = scale_factor * true_ys + i            
        else:
            true_ys = (marginal_values - np.linspace(marginal_offset, right_marginal_offset, len(marginal_values))) \
                      / max_over_stacks
            ys = scale_factor * true_ys + coord_value

        raw_colors = color or c or 'black'

        if palette:
            if isinstance(palette, str):
                palette = cm.get_cmap(palette)
            raw_colors = palette(np.abs(true_ys / max_over_stacks))

        if transpose:
            xs, ys = ys, xs

        xs = xs - i * shift

        lim = [max(lim[0], np.min(xs)), min(lim[1], np.max(xs))]

        label_for = '_nolegend_'
        if not labeled:
            labeled = True
            label_for = label

        color_for_plot = raw_colors
        if callable(color_for_plot):
            color_for_plot = color_for_plot(coord_value)

        if isinstance(raw_colors, (str, tuple)) or no_scatter:
            ax.plot(xs, ys, linewidth=linewidth, color=color_for_plot, label=label_for, **kwargs)
        else:
            ax.scatter(xs, ys, color=color_for_plot, s=s, label=label_for, **kwargs)

    x_label = other_axis
    y_label = stack_axis

    if transpose:
        x_label, y_label = y_label, x_label

    ax.set_xlabel(label_for_dim(data, x_label))
    ax.set_ylabel(label_for_dim(data, y_label))

    if transpose:
        ax.set_ylim(lim)
    else:
        ax.set_xlim(lim)

    ax.set_title(title)

    if out is not None:
        plt.savefig(path_for_plot(out), dpi=400)
        return path_for_plot(out)

    return fig, ax
Пример #4
0
def flat_stack_plot(data: DataType, stack_axis=None, fermi_level=True, cbarmap=None, ax=None,
                    mode='line', title=None, out=None, transpose=False, **kwargs):
    data = normalize_to_spectrum(data)
    if len(data.dims) != 2:
        raise ValueError('In order to produce a stack plot, data must be image-like.'
                         'Passed data included dimensions: {}'.format(data.dims))

    fig = None
    inset_ax = None
    if ax is None:
        fig, ax = plt.subplots(figsize=kwargs.get('figsize', (7, 5,)))
        inset_ax = inset_axes(ax, width='40%', height='5%', loc=1)

    if stack_axis is None:
        stack_axis = data.dims[0]

    skip_colorbar = True
    if cbarmap is None:
        skip_colorbar = False
        try:
            cbarmap = colorbarmaps_for_axis[stack_axis]
        except KeyError:
            cbarmap = generic_colorbarmap_for_data(data.coords[stack_axis], ax=inset_ax, ticks=kwargs.get('ticks'))

    cbar, cmap = cbarmap

    # should be exactly two
    other_dim = [d for d in data.dims if d != stack_axis][0]
    other_coord = data.coords[other_dim]

    if not isinstance(cmap, matplotlib.colors.Colormap):
        # do our best
        try:
            cmap = cmap()
        except:
            # might still be fine
            pass

    if 'eV' in data.dims and 'eV' != stack_axis and fermi_level:
        if transpose:
            ax.axhline(0, color='red', alpha=0.8, linestyle='--', linewidth=1)
        else:
            ax.axvline(0, color='red', alpha=0.8, linestyle='--', linewidth=1)

    # meat of the plotting
    for coord_dict, marginal in list(data.T.iterate_axis(stack_axis)):
        if transpose:
            if mode == 'line':
                ax.plot(marginal.values, marginal.coords[marginal.dims[0]].values, color=cmap(coord_dict[stack_axis]), **kwargs)
            else:
                assert mode == 'scatter'
                raise NotImplementedError()
        else:
            if mode == 'line':
                marginal.plot(ax=ax, color=cmap(coord_dict[stack_axis]), **kwargs)
            else:
                assert mode == 'scatter'
                ax.scatter(*marginal.T.to_arrays(), color=cmap(coord_dict[stack_axis]), **kwargs)
                ax.set_xlabel(marginal.dims[0])

    ax.set_xlabel(label_for_dim(data, ax.get_xlabel()))
    ax.set_ylabel('Spectrum Intensity (arb).')
    ax.set_title(title, fontsize=14)
    ax.set_xlim([other_coord.min().item(), other_coord.max().item()])

    try:
        if inset_ax is not None and not skip_colorbar:
            inset_ax.set_xlabel(stack_axis, fontsize=16)
            fancy_labels(inset_ax)

            cbar(ax=inset_ax, **kwargs)
    except TypeError:
        # already rendered
        pass

    if out is not None:
        plt.savefig(path_for_plot(out), dpi=400)
        return path_for_plot(out)

    return fig, ax