def problem_stats(order=3): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) with open_output_file("grudge-problem-stats.txt") as outf: _, dg_discr_2d = get_wave_op_with_discr( actx, dims=2, order=order) print("Number of 2D elements:", dg_discr_2d.mesh.nelements, file=outf) vol_discr_2d = dg_discr_2d.discr_from_dd("vol") dofs_2d = {group.nunit_dofs for group in vol_discr_2d.groups} from pytools import one print("Number of DOFs per 2D element:", one(dofs_2d), file=outf) _, dg_discr_3d = get_wave_op_with_discr( actx, dims=3, order=order) print("Number of 3D elements:", dg_discr_3d.mesh.nelements, file=outf) vol_discr_3d = dg_discr_3d.discr_from_dd("vol") dofs_3d = {group.nunit_dofs for group in vol_discr_3d.groups} from pytools import one print("Number of DOFs per 3D element:", one(dofs_3d), file=outf) logger.info("Wrote '%s'", outf.name)
def statement_counts_table(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) fused_stepper = get_example_stepper(actx, use_fusion=True) stepper = get_example_stepper(actx, use_fusion=False) with open_output_file("statement-counts.tex") as outf: if not PAPER_OUTPUT: print("==== Statement Counts ====", file=outf) print(table( "lr", ("Operator", "Grudge Node Count"), ( ("Time integration: baseline", r"\num{%d}" % len(stepper.bound_op.eval_code.instructions)), ("Right-hand side: baseline", r"\num{%d}" % len(stepper.grudge_bound_op.eval_code.instructions)), ("Inlined operator", r"\num{%d}" % len(fused_stepper.bound_op.eval_code.instructions)) )), file=outf) logger.info("Wrote '%s'", outf.name)
def test_assignment_memory_model(ctx_factory): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) _, discr = get_wave_op_with_discr(actx, dims=2, order=3) # Assignment instruction bound_op = bind( discr, sym.Variable("input0", dof_desc.DD_VOLUME) + sym.Variable("input1", dof_desc.DD_VOLUME), exec_mapper_factory=ExecutionMapperWithMemOpCounting) input0 = discr.zeros(actx) input1 = discr.zeros(actx) result, profile_data = bound_op( profile_data={}, input0=input0, input1=input1) assert profile_data["bytes_read"] == \ dof_array_nbytes(input0) + dof_array_nbytes(input1) assert profile_data["bytes_written"] == dof_array_nbytes(result)
def main(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) from meshmode.mesh.generation import ( # noqa generate_icosphere, generate_icosahedron, generate_torus) #mesh = generate_icosphere(1, order=order) mesh = generate_icosahedron(1, order=order) #mesh = generate_torus(3, 1, order=order) from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ PolynomialWarpAndBlendGroupFactory discr = Discretization(actx, mesh, PolynomialWarpAndBlendGroupFactory(order)) from meshmode.discretization.visualization import make_visualizer vis = make_visualizer(actx, discr, order) vis.write_vtk_file("geometry.vtu", [ ("f", thaw(discr.nodes()[0], actx)), ]) from meshmode.discretization.visualization import \ write_nodal_adjacency_vtk_file write_nodal_adjacency_vtk_file("adjacency.vtu", mesh)
def _visualize_refinement(actx: PyOpenCLArrayContext, discr, niter, stage_nr, stage_name, flags, visualize=False): if not visualize: return if stage_nr not in (1, 2): raise ValueError("unexpected stage number") flags = actx.to_numpy(flags) logger.info("for stage %s: splitting %d/%d stage-%d elements", stage_name, np.sum(flags), discr.mesh.nelements, stage_nr) from meshmode.discretization.visualization import make_visualizer vis = make_visualizer(actx, discr, 3) assert len(flags) == discr.mesh.nelements flags = flags.astype(bool) nodes_flags_template = discr.zeros(actx) nodes_flags = [] for grp in discr.groups: meg = grp.mesh_el_group nodes_flags_grp = actx.to_numpy(nodes_flags_template[grp.index]) nodes_flags_grp[flags[meg.element_nr_base:meg.nelements + meg.element_nr_base]] = 1 nodes_flags.append(actx.from_numpy(nodes_flags_grp)) nodes_flags = DOFArray(actx, tuple(nodes_flags)) vis_data = [ ("refine_flags", nodes_flags), ] if 0: from pytential import sym, bind bdry_normals = bind(discr, sym.normal( discr.ambient_dim))(actx).as_vector(dtype=object) vis_data.append(("bdry_normals", bdry_normals), ) vis.write_vtk_file(f"refinement-{stage_name}-{niter:03d}.vtu", vis_data)
def __init__(self, actx: PyOpenCLArrayContext, ambient_dim, tree_code_container, debug, _well_sep_is_n_away, _from_sep_smaller_crit): self.ambient_dim = ambient_dim self.tree_code_container = tree_code_container self._well_sep_is_n_away = _well_sep_is_n_away self._from_sep_smaller_crit = _from_sep_smaller_crit self._setup_actx = actx.clone() self.debug = debug
def _acf(): """A tiny undocumented function to pass to tests that take an ``actx_factory`` argument when running them from the command line. """ import pyopencl as cl from arraycontext import PyOpenCLArrayContext context = cl._csc() queue = cl.CommandQueue(context) return PyOpenCLArrayContext(queue)
def test_stepper_timing(ctx_factory, use_fusion): cl_ctx = ctx_factory() queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) dims = 3 sym_operator, discr = get_wave_op_with_discr( actx, dims=dims, order=3) t_start = 0 dt = 0.04 t_end = 0.1 ic = flat_obj_array(discr.zeros(actx), [discr.zeros(actx) for i in range(discr.dim)]) if not use_fusion: bound_op = bind( discr, sym_operator, exec_mapper_factory=ExecutionMapperWithTiming) stepper = RK4TimeStepper( discr, "w", bound_op, 1 + discr.dim, get_wave_component, exec_mapper_factory=ExecutionMapperWithTiming) else: stepper = FusedRK4TimeStepper( discr, "w", sym_operator, 1 + discr.dim, get_wave_component, exec_mapper_factory=ExecutionMapperWithTiming) step = 0 import time t = time.time() nsteps = int(np.ceil((t_end + 1e-9) / dt)) for (_, _, profile_data) in stepper.run( # noqa: B007 ic, t_start, dt, t_end, return_profile_data=True): step += 1 tn = time.time() logger.info("step %d/%d: %f", step, nsteps, tn - t) t = tn logger.info("fusion? %s", use_fusion) for key, value in profile_data.items(): if isinstance(value, TimingFutureList): print(key, value.elapsed())
def main(): logging.basicConfig(level=logging.INFO) cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nel_1d = 16 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5), nelements_per_axis=(nel_1d, nel_1d)) order = 3 # no deep meaning here, just a fudge factor dt = 0.7 / (nel_1d * order**2) logger.info("%d elements", mesh.nelements) discr = DGDiscretization(actx, mesh, order=order) fields = WaveState( u=bump(actx, discr), v=make_obj_array([discr.zeros(actx) for i in range(discr.dim)]), ) from meshmode.discretization.visualization import make_visualizer vis = make_visualizer(actx, discr.volume_discr) def rhs(t, q): return wave_operator(actx, discr, c=1, q=q) t = 0 t_final = 3 istep = 0 while t < t_final: fields = rk4_step(fields, t, dt, rhs) if istep % 10 == 0: # FIXME: Maybe an integral function to go with the # DOFArray would be nice? assert len(fields.u) == 1 logger.info("[%05d] t %.5e / %.5e norm %.5e", istep, t, t_final, flat_norm(fields.u, 2)) vis.write_vtk_file("fld-wave-min-%04d.vtu" % istep, [ ("q", fields), ]) t += dt istep += 1 assert flat_norm(fields.u, 2) < 100
def test_to_fd_consistency(ctx_factory, mm_mesh, fspace_degree): fspace_degree += mm_mesh.groups[0].order cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) factory = InterpolatoryQuadratureSimplexGroupFactory(fspace_degree) discr = Discretization(actx, mm_mesh, factory) fdrake_connection = build_connection_to_firedrake(discr) fdrake_fspace = fdrake_connection.firedrake_fspace() # Check consistency check_consistency(fdrake_fspace, discr)
def test_stepper_mem_ops(ctx_factory, use_fusion): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) dims = 2 sym_operator, discr = get_wave_op_with_discr( actx, dims=dims, order=3) t_start = 0 dt = 0.04 t_end = 0.2 ic = flat_obj_array(discr.zeros(actx), [discr.zeros(actx) for i in range(discr.dim)]) if not use_fusion: bound_op = bind( discr, sym_operator, exec_mapper_factory=ExecutionMapperWithMemOpCounting) stepper = RK4TimeStepper( discr, "w", bound_op, 1 + discr.dim, get_wave_component, exec_mapper_factory=ExecutionMapperWithMemOpCounting) else: stepper = FusedRK4TimeStepper( discr, "w", sym_operator, 1 + discr.dim, get_wave_component, exec_mapper_factory=ExecutionMapperWithMemOpCounting) step = 0 nsteps = int(np.ceil((t_end + 1e-9) / dt)) for (_, _, profile_data) in stepper.run( # noqa: B007 ic, t_start, dt, t_end, return_profile_data=True): step += 1 logger.info("step %d/%d", step, nsteps) logger.info("using fusion? %s", use_fusion) logger.info("bytes read: %d", profile_data["bytes_read"]) logger.info("bytes written: %d", profile_data["bytes_written"]) logger.info("bytes total: %d", profile_data["bytes_read"] + profile_data["bytes_written"])
def test_stepper_equivalence(ctx_factory, order=4): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) dims = 2 sym_operator, discr = get_wave_op_with_discr( actx, dims=dims, order=order) #sym_operator_direct, discr = get_wave_op_with_discr_direct( # actx, dims=dims, order=order) if dims == 2: dt = 0.04 elif dims == 3: dt = 0.02 ic = flat_obj_array(discr.zeros(actx), [discr.zeros(actx) for i in range(discr.dim)]) bound_op = bind(discr, sym_operator) stepper = RK4TimeStepper( discr, "w", bound_op, 1 + discr.dim, get_wave_component) fused_stepper = FusedRK4TimeStepper( discr, "w", sym_operator, 1 + discr.dim, get_wave_component) t_start = 0 t_end = 0.5 nsteps = int(np.ceil((t_end + 1e-9) / dt)) print("dt=%g nsteps=%d" % (dt, nsteps)) step = 0 norm = bind(discr, sym.norm(2, sym.var("u_ref") - sym.var("u"))) fused_steps = fused_stepper.run(ic, t_start, dt, t_end) for t_ref, (u_ref, _v_ref) in stepper.run(ic, t_start, dt, t_end): step += 1 logger.debug("step %d/%d", step, nsteps) t, (u, v) = next(fused_steps) assert t == t_ref, step assert norm(u=u, u_ref=u_ref) <= 1e-13, step
def test_from_fd_consistency(ctx_factory, fdrake_mesh, fspace_degree): """ Check basic consistency with a FiredrakeConnection built from firedrake """ # make discretization from firedrake fdrake_fspace = FunctionSpace(fdrake_mesh, "DG", fspace_degree) cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) fdrake_connection = build_connection_from_firedrake(actx, fdrake_fspace) discr = fdrake_connection.discr # Check consistency check_consistency(fdrake_fspace, discr)
def test_to_fd_idempotency(ctx_factory, mm_mesh, fspace_degree): """ Make sure mm->fd->mm and (mm->)->fd->mm->fd are identity """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) # make sure degree is higher order than mesh fspace_degree += mm_mesh.groups[0].order # Make a function space and a function with unique values at each node factory = InterpolatoryQuadratureSimplexGroupFactory(fspace_degree) discr = Discretization(actx, mm_mesh, factory) fdrake_connection = build_connection_to_firedrake(discr) fdrake_mesh = fdrake_connection.firedrake_fspace().mesh() dtype = fdrake_mesh.coordinates.dat.data.dtype mm_unique = discr.zeros(actx, dtype=dtype) unique_vals = np.arange(np.size(mm_unique[0]), dtype=dtype) mm_unique[0].set(unique_vals.reshape(mm_unique[0].shape)) mm_unique_copy = DOFArray(actx, (mm_unique[0].copy(), )) # Test for idempotency mm->fd->mm fdrake_unique = fdrake_connection.from_meshmode(mm_unique) fdrake_connection.from_firedrake(fdrake_unique, out=mm_unique_copy) np.testing.assert_allclose(actx.to_numpy(mm_unique_copy[0]), actx.to_numpy(mm_unique[0]), atol=CLOSE_ATOL) # Test for idempotency (mm->)fd->mm->fd fdrake_unique_copy = fdrake_connection.from_meshmode(mm_unique_copy) np.testing.assert_allclose(fdrake_unique_copy.dat.data, fdrake_unique.dat.data, atol=CLOSE_ATOL)
def scalar_assignment_percent_of_total_mem_ops_table(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) result2d = mem_ops_results(actx, 2) result3d = mem_ops_results(actx, 3) with open_output_file("scalar-assignments-mem-op-percentage.tex") as outf: if not PAPER_OUTPUT: print("==== Scalar Assigment % of Total Mem Ops ====", file=outf) print( table( "lr", ("Operator", r"\parbox{1in}{\centering \% Memory Ops. " r"Due to Scalar Assignments}"), ( ("2D: Baseline", "%.1f" % ( 100 * result2d["nonfused_bytes_total_by_scalar_assignments"] / result2d["nonfused_bytes_total"])), ("2D: Inlined", "%.1f" % ( 100 * result2d["fused_bytes_total_by_scalar_assignments"] / result2d["fused_bytes_total"])), ("3D: Baseline", "%.1f" % ( 100 * result3d["nonfused_bytes_total_by_scalar_assignments"] / result3d["nonfused_bytes_total"])), ("3D: Inlined", "%.1f" % ( 100 * result3d["fused_bytes_total_by_scalar_assignments"] / result3d["fused_bytes_total"])), )), file=outf) logger.info("Wrote '%s'", outf.name)
def main(): # If can't import firedrake, do nothing # # filename MUST include "firedrake" (i.e. match *firedrake*.py) in order # to be run during CI try: import firedrake # noqa : F401 except ImportError: return 0 from meshmode.interop.firedrake import build_connection_from_firedrake from firedrake import (UnitSquareMesh, FunctionSpace, SpatialCoordinate, Function, cos) # Create a firedrake mesh and interpolate cos(x+y) onto it fd_mesh = UnitSquareMesh(10, 10) fd_fspace = FunctionSpace(fd_mesh, "DG", 2) spatial_coord = SpatialCoordinate(fd_mesh) fd_fntn = Function(fd_fspace).interpolate(cos(sum(spatial_coord))) # Make connections cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) fd_connection = build_connection_from_firedrake(actx, fd_fspace) fd_bdy_connection = \ build_connection_from_firedrake(actx, fd_fspace, restrict_to_boundary="on_boundary") # Plot the meshmode meshes that the connections connect to import matplotlib.pyplot as plt from meshmode.mesh.visualization import draw_2d_mesh fig, (ax1, ax2) = plt.subplots(1, 2) ax1.set_title("FiredrakeConnection") plt.sca(ax1) draw_2d_mesh(fd_connection.discr.mesh, draw_vertex_numbers=False, draw_element_numbers=False, set_bounding_box=True) ax2.set_title("FiredrakeConnection 'on_boundary'") plt.sca(ax2) draw_2d_mesh(fd_bdy_connection.discr.mesh, draw_vertex_numbers=False, draw_element_numbers=False, set_bounding_box=True) plt.show() # Plot fd_fntn using unrestricted FiredrakeConnection from meshmode.discretization.visualization import make_visualizer discr = fd_connection.discr vis = make_visualizer(actx, discr, discr.groups[0].order + 3) field = fd_connection.from_firedrake(fd_fntn, actx=actx) fig = plt.figure() ax1 = fig.add_subplot(1, 2, 1, projection="3d") ax1.set_title("cos(x+y) in\nFiredrakeConnection") vis.show_scalar_in_matplotlib_3d(field, do_show=False) # Now repeat using FiredrakeConnection restricted to "on_boundary" bdy_discr = fd_bdy_connection.discr bdy_vis = make_visualizer(actx, bdy_discr, bdy_discr.groups[0].order + 3) bdy_field = fd_bdy_connection.from_firedrake(fd_fntn, actx=actx) ax2 = fig.add_subplot(1, 2, 2, projection="3d") plt.sca(ax2) ax2.set_title("cos(x+y) in\nFiredrakeConnection 'on_boundary'") bdy_vis.show_scalar_in_matplotlib_3d(bdy_field, do_show=False) import matplotlib.cm as cm fig.colorbar(cm.ScalarMappable()) plt.show()
def test_to_fd_transfer(ctx_factory, fspace_degree, mesh_name, mesh_pars, dim): """ Make sure creating a function which projects onto one dimension then transports it is the same (up to resampling error) as projecting to one dimension on the transported mesh """ # build estimate-of-convergence recorder from pytools.convergence import EOCRecorder # dimension projecting onto -> EOCRecorder eoc_recorders = {d: EOCRecorder() for d in range(dim)} # make a computing context cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) # Get each of the refinements of the meshmeshes and record # conversions errors for mesh_par in mesh_pars: if mesh_name in ("blob2d-order1", "blob2d-order4"): assert dim == 2 from meshmode.mesh.io import read_gmsh mm_mesh = read_gmsh(f"{mesh_name}-h{mesh_par}.msh", force_ambient_dim=dim) h = float(mesh_par) elif mesh_name == "warp": from meshmode.mesh.generation import generate_warped_rect_mesh mm_mesh = generate_warped_rect_mesh(dim, order=4, nelements_side=mesh_par) h = 1 / mesh_par else: raise ValueError("mesh_name not recognized") # Make discr and connect it to firedrake factory = InterpolatoryQuadratureSimplexGroupFactory(fspace_degree) discr = Discretization(actx, mm_mesh, factory) fdrake_connection = build_connection_to_firedrake(discr) fdrake_fspace = fdrake_connection.firedrake_fspace() spatial_coord = SpatialCoordinate(fdrake_fspace.mesh()) # get the group's nodes in a numpy array nodes = discr.nodes() group_nodes = np.array( [actx.to_numpy(dof_arr[0]) for dof_arr in nodes]) for d in range(dim): meshmode_f = discr.zeros(actx) meshmode_f[0][:] = group_nodes[d, :, :] # connect to firedrake and evaluate expr in firedrake fdrake_f = Function(fdrake_fspace).interpolate(spatial_coord[d]) # transport to firedrake and record error mm2fd_f = fdrake_connection.from_meshmode(meshmode_f) err = np.max(np.abs(fdrake_f.dat.data - mm2fd_f.dat.data)) eoc_recorders[d].add_data_point(h, err) # assert that order is correct or error is "low enough" for d, eoc_rec in eoc_recorders.items(): print("\nvector *x* -> *x[%s]*\n" % d, eoc_rec) assert (eoc_rec.order_estimate() >= fspace_degree or eoc_rec.max_error() < 2e-14)
def main(): # If can't import firedrake, do nothing # # filename MUST include "firedrake" (i.e. match *firedrake*.py) in order # to be run during CI try: import firedrake # noqa : F401 except ImportError: return 0 # For this example, imagine we wish to solve the Laplace equation # on a meshmode mesh with some given Dirichlet boundary conditions, # and decide to use firedrake. # # To verify this is working, we use a solution to the wave equation # to get our boundary conditions # {{{ First we make a discretization in meshmode and get our bcs cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nel_1d = 16 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(-0.5, -0.5), b=(0.5, 0.5), nelements_per_axis=(nel_1d, nel_1d)) order = 3 from meshmode.discretization import Discretization from meshmode.discretization.poly_element import \ InterpolatoryQuadratureSimplexGroupFactory group_factory = InterpolatoryQuadratureSimplexGroupFactory(order=order) discr = Discretization(actx, mesh, group_factory) # Get our solution: we will use # Real(e^z) = Real(e^{x+iy}) # = e^x Real(e^{iy}) # = e^x cos(y) nodes = discr.nodes() for i in range(len(nodes)): nodes[i] = thaw(nodes[i], actx) # First index is dimension candidate_sol = actx.np.exp(nodes[0]) * actx.np.cos(nodes[1]) # }}} # {{{ Now send candidate_sol into firedrake and use it for boundary conditions from meshmode.interop.firedrake import build_connection_to_firedrake fd_connection = build_connection_to_firedrake(discr, group_nr=0) # convert candidate_sol to firedrake fd_candidate_sol = fd_connection.from_meshmode(candidate_sol) # get the firedrake function space fd_fspace = fd_connection.firedrake_fspace() # set up dirichlet laplace problem in fd and solve from firedrake import ( FunctionSpace, TrialFunction, TestFunction, Function, inner, grad, dx, Constant, project, DirichletBC, solve) # because it's easier to write down the variational problem, # we're going to project from our "DG" space # into a continuous one. cfd_fspace = FunctionSpace(fd_fspace.mesh(), "CG", order) u = TrialFunction(cfd_fspace) v = TestFunction(cfd_fspace) sol = Function(cfd_fspace) a = inner(grad(u), grad(v)) * dx rhs = Constant(0.0) * v * dx bc_value = project(fd_candidate_sol, cfd_fspace) bc = DirichletBC(cfd_fspace, bc_value, "on_boundary") params = {"ksp_monitor": None} solve(a == rhs, sol, bcs=[bc], solver_parameters=params) # project back into our "DG" space sol = project(sol, fd_fspace) # }}} # {{{ Take the solution from firedrake and compare it to candidate_sol true_sol = fd_connection.from_firedrake(sol, actx=actx) # pull back into numpy true_sol = actx.to_numpy(true_sol[0]) candidate_sol = actx.to_numpy(candidate_sol[0]) print("l^2 difference between candidate solution and firedrake solution=", np.linalg.norm(true_sol - candidate_sol))
discr = reconstruct_discr_from_nodes(actx, discr0, x) vis = make_visualizer(actx, discr, vis_order=target_order) # vis = vis.copy_with_same_connectivity(actx, discr) filename = f"moving-geometry-{n:09d}.vtu" plot_solution(actx, vis, filename, discr, t, x) logger.info("[%05d/%05d] t = %.5e/%.5e dt = %.5e", n, maxiter, t, tmax, dt) # }}} if __name__ == "__main__": cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) from pytools import ProcessTimer for _ in range(1): with ProcessTimer() as p: run(actx, ambient_dim=3, group_factory_name="warp_and_blend", tmax=1.0, timestep=1.0e-2, visualize=False) logger.info("elapsed: %.3fs wall %.2fx cpu", p.wall_elapsed, p.process_elapsed / p.wall_elapsed)
def test_from_fd_idempotency(ctx_factory, fdrake_mesh, fspace_degree, fspace_type, only_convert_bdy): """ Make sure fd->mm->fd and (fd->)->mm->fd->mm are identity """ # Make a function space and a function with unique values at each node if fspace_type == "scalar": fdrake_fspace = FunctionSpace(fdrake_mesh, "DG", fspace_degree) # Just use the node nr fdrake_unique = Function(fdrake_fspace) fdrake_unique.dat.data[:] = np.arange(fdrake_unique.dat.data.shape[0]) elif fspace_type == "vector": fdrake_fspace = VectorFunctionSpace(fdrake_mesh, "DG", fspace_degree) # use the coordinates xx = SpatialCoordinate(fdrake_fspace.mesh()) fdrake_unique = Function(fdrake_fspace).interpolate(xx) elif fspace_type == "tensor": fdrake_fspace = TensorFunctionSpace(fdrake_mesh, "DG", fspace_degree) # use the coordinates, duplicated into the right tensor shape xx = SpatialCoordinate(fdrake_fspace.mesh()) dim = fdrake_fspace.mesh().geometric_dimension() unique_expr = as_tensor([xx for _ in range(dim)]) fdrake_unique = Function(fdrake_fspace).interpolate(unique_expr) # Make connection cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) # If only converting boundary, first go ahead and do one round of # fd->mm->fd. This will zero out any degrees of freedom absent in # the meshmode mesh (because they are not associated to cells # with >= 1 node on the boundary) # # Otherwise, just continue as normal if only_convert_bdy: fdrake_connection = \ build_connection_from_firedrake(actx, fdrake_fspace, restrict_to_boundary="on_boundary") temp = fdrake_connection.from_firedrake(fdrake_unique, actx=actx) fdrake_unique = fdrake_connection.from_meshmode(temp) else: fdrake_connection = build_connection_from_firedrake( actx, fdrake_fspace) # Test for idempotency fd->mm->fd mm_field = fdrake_connection.from_firedrake(fdrake_unique, actx=actx) fdrake_unique_copy = Function(fdrake_fspace) fdrake_connection.from_meshmode(mm_field, out=fdrake_unique_copy) np.testing.assert_allclose(fdrake_unique_copy.dat.data, fdrake_unique.dat.data, atol=CLOSE_ATOL) # Test for idempotency (fd->)mm->fd->mm mm_field_copy = fdrake_connection.from_firedrake(fdrake_unique_copy, actx=actx) if fspace_type == "scalar": np.testing.assert_allclose(actx.to_numpy(mm_field_copy[0]), actx.to_numpy(mm_field[0]), atol=CLOSE_ATOL) else: for dof_arr_cp, dof_arr in zip(mm_field_copy.flatten(), mm_field.flatten()): np.testing.assert_allclose(actx.to_numpy(dof_arr_cp[0]), actx.to_numpy(dof_arr[0]), atol=CLOSE_ATOL)
def test_from_boundary_consistency(ctx_factory, fdrake_mesh, fspace_degree): """ Make basic checks that FiredrakeConnection restricted to cells near the boundary is not doing something obviously wrong, i.e. that the firedrake boundary tags partition the converted meshmode mesh, that the firedrake boundary tags correspond to the same physical regions in the converted meshmode mesh as in the original firedrake mesh, and that each boundary tag is associated to the same number of facets in the converted meshmode mesh as in the original firedrake mesh. """ fdrake_fspace = FunctionSpace(fdrake_mesh, "DG", fspace_degree) cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) frombdy_conn = \ build_connection_from_firedrake(actx, fdrake_fspace, restrict_to_boundary="on_boundary") # Ensure the meshmode mesh has one group and make sure both # meshes agree on some basic properties discr = frombdy_conn.discr assert len(discr.mesh.groups) == 1 fdrake_mesh_fspace = fdrake_mesh.coordinates.function_space() fdrake_mesh_order = fdrake_mesh_fspace.finat_element.degree assert discr.mesh.groups[0].dim == fdrake_mesh.topological_dimension() assert discr.mesh.groups[0].order == fdrake_mesh_order # Get the unit vertex indices (in each cell) fdrake_mesh = fdrake_fspace.mesh() cfspace = fdrake_mesh.coordinates.function_space() entity_dofs = cfspace.finat_element.entity_dofs()[0] fdrake_unit_vert_indices = [] for _, local_node_nrs in sorted(entity_dofs.items()): assert len(local_node_nrs) == 1 fdrake_unit_vert_indices.append(local_node_nrs[0]) fdrake_unit_vert_indices = np.array(fdrake_unit_vert_indices) # only look at cells "near" bdy (with >= 1 vertex on) from meshmode.interop.firedrake.connection import _get_cells_to_use cells_near_bdy = _get_cells_to_use(fdrake_mesh, "on_boundary") # get the firedrake vertices of cells near the boundary, # in no particular order fdrake_vert_indices = \ cfspace.cell_node_list[cells_near_bdy, fdrake_unit_vert_indices[:, np.newaxis]] fdrake_vert_indices = np.unique(fdrake_vert_indices) fdrake_verts = fdrake_mesh.coordinates.dat.data[fdrake_vert_indices, ...] if fdrake_mesh.geometric_dimension() == 1: fdrake_verts = fdrake_verts[:, np.newaxis] # Get meshmode vertices (shaped like (dim, nverts)) meshmode_verts = discr.mesh.vertices # Ensure that the vertices of firedrake elements on # the boundary are identical to the resultant meshes' vertices up to # reordering # Nb: I got help on this from stack overflow: # https://stackoverflow.com/questions/38277143/sort-2d-numpy-array-lexicographically # noqa: E501 lex_sorted_mm_verts = meshmode_verts[:, np.lexsort(meshmode_verts)] lex_sorted_fdrake_verts = fdrake_verts[np.lexsort(fdrake_verts.T)] np.testing.assert_allclose(lex_sorted_mm_verts, lex_sorted_fdrake_verts.T, atol=CLOSE_ATOL) # Ensure the discretization and the firedrake function space reference element # agree on some basic properties finat_elt = fdrake_fspace.finat_element assert len(discr.groups) == 1 assert discr.groups[0].order == finat_elt.degree assert discr.groups[0].nunit_dofs == finat_elt.space_dimension()
def build_tree_with_qbx_metadata(actx: PyOpenCLArrayContext, places, tree_builder, particle_list_filter, sources_list=(), targets_list=(), use_stage2_discr=False): """Return a :class:`TreeWithQBXMetadata` built from the given layer potential source. This contains particles of four different types: * source particles either from :class:`~pytential.symbolic.primitives.QBX_SOURCE_STAGE1` or :class:`~pytential.symbolic.primitives.QBX_SOURCE_QUAD_STAGE2`. * centers from :class:`~pytential.symbolic.primitives.QBX_SOURCE_STAGE1`. * targets from ``targets_list``. :arg places: An instance of :class:`~pytential.symbolic.execution.GeometryCollection`. :arg targets_list: A list of :class:`pytential.target.TargetBase` :arg use_stage2_discr: If *True*, builds a tree with stage 2 sources. If *False*, the tree is built with stage 1 sources. """ # The ordering of particles is as follows: # - sources go first # - then centers # - then targets from pytential import bind, sym stage1_density_discrs = [] density_discrs = [] for source_name in sources_list: dd = sym.as_dofdesc(source_name) discr = places.get_discretization(dd.geometry) stage1_density_discrs.append(discr) if use_stage2_discr: discr = places.get_discretization( dd.geometry, sym.QBX_SOURCE_QUAD_STAGE2) density_discrs.append(discr) # TODO: update code to work for multiple source discretizations if len(sources_list) != 1: raise RuntimeError("can only build a tree for a single source") def _make_centers(discr): return bind(discr, sym.interleaved_expansion_centers( discr.ambient_dim))(actx) stage1_density_discr = stage1_density_discrs[0] density_discr = density_discrs[0] from arraycontext import flatten sources = flatten(density_discr.nodes(), actx, leaf_class=DOFArray) centers = flatten(_make_centers(stage1_density_discr), actx, leaf_class=DOFArray) targets = [ flatten(tgt.nodes(), actx, leaf_class=DOFArray) for tgt in targets_list] queue = actx.queue particles = tuple( actx.np.concatenate(dim_coords) for dim_coords in zip(sources, centers, *targets)) # Counts nparticles = len(particles[0]) nelements = density_discr.mesh.nelements nsources = len(sources[0]) ncenters = len(centers[0]) # Each source gets an interior / exterior center. assert 2 * nsources == ncenters or use_stage2_discr ntargets = sum(tgt.ndofs for tgt in targets_list) # Slices qbx_user_source_slice = slice(0, nsources) center_slice_start = nsources qbx_user_center_slice = slice(center_slice_start, center_slice_start + ncenters) element_slice_start = center_slice_start + ncenters target_slice_start = element_slice_start qbx_user_target_slice = slice(target_slice_start, target_slice_start + ntargets) # Build tree with sources and centers. Split boxes # only because of sources. refine_weights = actx.zeros(nparticles, np.int32) refine_weights[:nsources].fill(1) refine_weights.finish() tree, evt = tree_builder(queue, particles, max_leaf_refine_weight=MAX_REFINE_WEIGHT, refine_weights=refine_weights) # Compute box => particle class relations flags = refine_weights del refine_weights particle_classes = {} for class_name, particle_slice, fixup in ( ("box_to_qbx_source", qbx_user_source_slice, 0), ("box_to_qbx_target", qbx_user_target_slice, -target_slice_start), ("box_to_qbx_center", qbx_user_center_slice, -center_slice_start)): flags.fill(0) flags[particle_slice].fill(1) flags.finish() box_to_class = ( particle_list_filter .filter_target_lists_in_user_order(queue, tree, flags) ).with_queue(actx.queue) if fixup: box_to_class.target_lists += fixup particle_classes[class_name + "_starts"] = box_to_class.target_starts particle_classes[class_name + "_lists"] = box_to_class.target_lists del flags del box_to_class # Compute element => source relation qbx_element_to_source_starts = actx.empty(nelements + 1, tree.particle_id_dtype) el_offset = 0 node_nr_base = 0 for group in density_discr.groups: group_element_starts = np.arange( node_nr_base, node_nr_base + group.ndofs, group.nunit_dofs, dtype=tree.particle_id_dtype) qbx_element_to_source_starts[el_offset:el_offset + group.nelements] = \ actx.from_numpy(group_element_starts) node_nr_base += group.ndofs el_offset += group.nelements qbx_element_to_source_starts[-1] = nsources # Compute element => center relation qbx_element_to_center_starts = ( 2 * qbx_element_to_source_starts if not use_stage2_discr else None) # Transfer all tree attributes. tree_attrs = {} for attr_name in tree.__class__.fields: try: tree_attrs[attr_name] = getattr(tree, attr_name) except AttributeError: pass tree_attrs.update(particle_classes) return TreeWithQBXMetadata( qbx_element_to_source_starts=qbx_element_to_source_starts, qbx_element_to_center_starts=qbx_element_to_center_starts, qbx_user_source_slice=qbx_user_source_slice, qbx_user_center_slice=qbx_user_center_slice, qbx_user_target_slice=qbx_user_target_slice, nqbxelements=nelements, nqbxsources=nsources, nqbxcenters=ncenters, nqbxtargets=ntargets, **tree_attrs).with_queue(None)
def _test_mpi_boundary_swap(dim, order, num_groups): from meshmode.distributed import MPIMeshDistributor, MPIBoundaryCommSetupHelper from mpi4py import MPI mpi_comm = MPI.COMM_WORLD i_local_part = mpi_comm.Get_rank() num_parts = mpi_comm.Get_size() mesh_dist = MPIMeshDistributor(mpi_comm) if mesh_dist.is_mananger_rank(): np.random.seed(42) from meshmode.mesh.generation import generate_warped_rect_mesh meshes = [generate_warped_rect_mesh(dim, order=order, nelements_side=4) for _ in range(num_groups)] if num_groups > 1: from meshmode.mesh.processing import merge_disjoint_meshes mesh = merge_disjoint_meshes(meshes) else: mesh = meshes[0] part_per_element = np.random.randint(num_parts, size=mesh.nelements) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) else: local_mesh = mesh_dist.receive_mesh_part() group_factory = PolynomialWarpAndBlendGroupFactory(order) from arraycontext import PyOpenCLArrayContext cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) from meshmode.discretization import Discretization vol_discr = Discretization(actx, local_mesh, group_factory) from meshmode.distributed import get_connected_partitions connected_parts = get_connected_partitions(local_mesh) # Check that the connectivity makes sense before doing any communication _test_connected_parts(mpi_comm, connected_parts) from meshmode.discretization.connection import make_face_restriction from meshmode.mesh import BTAG_PARTITION local_bdry_conns = {} for i_remote_part in connected_parts: local_bdry_conns[i_remote_part] = make_face_restriction( actx, vol_discr, group_factory, BTAG_PARTITION(i_remote_part)) remote_to_local_bdry_conns = {} with MPIBoundaryCommSetupHelper(mpi_comm, actx, local_bdry_conns, bdry_grp_factory=group_factory) as bdry_setup_helper: from meshmode.discretization.connection import check_connection while True: conns = bdry_setup_helper.complete_some() if not conns: break for i_remote_part, conn in conns.items(): check_connection(actx, conn) remote_to_local_bdry_conns[i_remote_part] = conn _test_data_transfer(mpi_comm, actx, local_bdry_conns, remote_to_local_bdry_conns, connected_parts) logger.debug("Rank %d exiting", i_local_part)
def exec_compute_potential_insn_fmm(self, actx: PyOpenCLArrayContext, insn, bound_expr, evaluate, fmm_driver): """ :arg fmm_driver: A function that accepts four arguments: *wrangler*, *strength*, *geo_data*, *kernel*, *kernel_arguments* :returns: a tuple ``(assignments, extra_outputs)``, where *assignments* is a list of tuples containing pairs ``(name, value)`` representing assignments to be performed in the evaluation context. *extra_outputs* is data that *fmm_driver* may return (such as timing data), passed through unmodified. """ target_name_and_side_to_number, target_discrs_and_qbx_sides = ( self.get_target_discrs_and_qbx_sides(insn, bound_expr)) geo_data = self.qbx_fmm_geometry_data( bound_expr.places, insn.source.geometry, target_discrs_and_qbx_sides) # FIXME Exert more positive control over geo_data attribute lifetimes using # geo_data.<method>.clear_cache(geo_data). # FIXME Synthesize "bad centers" around corners and edges that have # inadequate QBX coverage. # FIXME don't compute *all* output kernels on all targets--respect that # some target discretizations may only be asking for derivatives (e.g.) flat_strengths = get_flat_strengths_from_densities( actx, bound_expr.places, evaluate, insn.densities, dofdesc=insn.source) base_kernel = single_valued(knl.get_base_kernel() for knl in insn.source_kernels) output_and_expansion_dtype = ( self.get_fmm_output_and_expansion_dtype(insn.source_kernels, flat_strengths[0])) kernel_extra_kwargs, source_extra_kwargs = ( self.get_fmm_expansion_wrangler_extra_kwargs( actx, insn.target_kernels + insn.source_kernels, geo_data.tree().user_source_ids, insn.kernel_arguments, evaluate)) tree_indep = self._tree_indep_data_for_wrangler( target_kernels=insn.target_kernels, source_kernels=insn.source_kernels) wrangler = tree_indep.wrangler_cls( tree_indep, geo_data, output_and_expansion_dtype, self.qbx_order, self.fmm_level_to_order, source_extra_kwargs=source_extra_kwargs, kernel_extra_kwargs=kernel_extra_kwargs) from pytential.qbx.geometry import target_state if actx.to_numpy(actx.np.any( actx.thaw(geo_data.user_target_to_center()) == target_state.FAILED)): raise RuntimeError("geometry has failed targets") # {{{ geometry data inspection hook if self.geometry_data_inspector is not None: perform_fmm = self.geometry_data_inspector(insn, bound_expr, geo_data) if not perform_fmm: return [(o.name, 0) for o in insn.outputs] # }}} # Execute global QBX. all_potentials_on_every_target, extra_outputs = ( fmm_driver( wrangler, flat_strengths, geo_data, base_kernel, kernel_extra_kwargs)) results = [] for o in insn.outputs: target_side_number = target_name_and_side_to_number[ o.target_name, o.qbx_forced_limit] target_discr, _ = target_discrs_and_qbx_sides[target_side_number] target_slice = slice(*geo_data.target_info().target_discr_starts[ target_side_number:target_side_number+2]) result = \ all_potentials_on_every_target[o.target_kernel_index][target_slice] from meshmode.discretization import Discretization if isinstance(target_discr, Discretization): template_ary = thaw(target_discr.nodes()[0], actx) result = unflatten(template_ary, result, actx, strict=False) results.append((o.name, result)) return results, extra_outputs
def test_from_fd_transfer(ctx_factory, fspace_degree, fdrake_mesh_name, fdrake_mesh_pars, dim, only_convert_bdy): """ Make sure creating a function which projects onto one dimension then transports it is the same (up to resampling error) as projecting to one dimension on the transported mesh """ # build estimate-of-convergence recorder from pytools.convergence import EOCRecorder # (fd -> mm ? True : False, dimension projecting onto) eoc_recorders = {(True, d): EOCRecorder() for d in range(dim)} if not only_convert_bdy: for d in range(dim): eoc_recorders[(False, d)] = EOCRecorder() # make a computing context cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) def get_fdrake_mesh_and_h_from_par(mesh_par): if fdrake_mesh_name == "UnitInterval": assert dim == 1 n = mesh_par fdrake_mesh = UnitIntervalMesh(n) h = 1 / n elif fdrake_mesh_name == "UnitSquare": assert dim == 2 n = mesh_par fdrake_mesh = UnitSquareMesh(n, n) h = 1 / n elif fdrake_mesh_name == "UnitCube": assert dim == 3 n = mesh_par fdrake_mesh = UnitCubeMesh(n, n, n) h = 1 / n elif fdrake_mesh_name in ("blob2d-order1", "blob2d-order4"): assert dim == 2 if fdrake_mesh_name == "blob2d-order1": from firedrake import Mesh fdrake_mesh = Mesh(f"{fdrake_mesh_name}-h{mesh_par}.msh", dim=dim) else: from meshmode.mesh.io import read_gmsh from meshmode.interop.firedrake import export_mesh_to_firedrake mm_mesh = read_gmsh(f"{fdrake_mesh_name}-h{mesh_par}.msh", force_ambient_dim=dim) fdrake_mesh, _, _ = export_mesh_to_firedrake(mm_mesh) h = float(mesh_par) elif fdrake_mesh_name == "warp": from meshmode.mesh.generation import generate_warped_rect_mesh from meshmode.interop.firedrake import export_mesh_to_firedrake mm_mesh = generate_warped_rect_mesh(dim, order=4, nelements_side=mesh_par) fdrake_mesh, _, _ = export_mesh_to_firedrake(mm_mesh) h = 1 / mesh_par else: raise ValueError("fdrake_mesh_name not recognized") return (fdrake_mesh, h) # Record error for each refinement of each mesh for mesh_par in fdrake_mesh_pars: fdrake_mesh, h = get_fdrake_mesh_and_h_from_par(mesh_par) # make function space and build connection fdrake_fspace = FunctionSpace(fdrake_mesh, "DG", fspace_degree) if only_convert_bdy: fdrake_connection = \ build_connection_from_firedrake(actx, fdrake_fspace, restrict_to_boundary="on_boundary") else: fdrake_connection = build_connection_from_firedrake( actx, fdrake_fspace) # get this for making functions in firedrake spatial_coord = SpatialCoordinate(fdrake_mesh) # get nodes in handier format for making meshmode functions discr = fdrake_connection.discr # nodes is np array (ambient_dim,) of DOFArray (ngroups,) # of arrays (nelements, nunit_dofs), we want a single np array # of shape (ambient_dim, nelements, nunit_dofs) nodes = discr.nodes() group_nodes = np.array( [actx.to_numpy(dof_arr[0]) for dof_arr in nodes]) # Now, for each coordinate d, test transferring the function # x -> sin(dth component of x) for d in range(dim): fdrake_f = Function(fdrake_fspace).interpolate( sin(spatial_coord[d])) # transport fdrake function and put in numpy fd2mm_f = fdrake_connection.from_firedrake(fdrake_f, actx=actx) fd2mm_f = actx.to_numpy(fd2mm_f[0]) meshmode_f = np.sin(group_nodes[d, :, :]) # record fd -> mm error err = np.max(np.abs(fd2mm_f - meshmode_f)) eoc_recorders[(True, d)].add_data_point(h, err) if not only_convert_bdy: # now transport mm -> fd meshmode_f_dofarr = discr.zeros(actx) meshmode_f_dofarr[0][:] = meshmode_f mm2fd_f = fdrake_connection.from_meshmode(meshmode_f_dofarr) # record mm -> fd error err = np.max(np.abs(fdrake_f.dat.data - mm2fd_f.dat.data)) eoc_recorders[(False, d)].add_data_point(h, err) # assert that order is correct or error is "low enough" for ((fd2mm, d), eoc_rec) in eoc_recorders.items(): print( "\nfiredrake -> meshmode: %s\nvector *x* -> *sin(x[%s])*\n" % (fd2mm, d), eoc_rec) assert (eoc_rec.order_estimate() >= fspace_degree or eoc_rec.max_error() < 2e-14)