Пример #1
0
def test_calculate_p():
    obj = test()

    p1, p2, p3 = calculate_p(obj)

    p1_expected = obj.p1_start + (0.5 + np.arange(obj.N_p1)) * obj.dp1
    p2_expected = obj.p2_start + (0.5 + np.arange(obj.N_p2)) * obj.dp2
    p3_expected = obj.p3_start + (0.5 + np.arange(obj.N_p3)) * obj.dp3

    p2_expected, p1_expected, p3_expected = np.meshgrid(p2_expected,
                                                        p1_expected,
                                                        p3_expected
                                                       )
    
    p1_expected = af.reorder(af.flat(af.to_array(p1_expected)),
                             2, 3, 0, 1
                            )
                          
    p2_expected = af.reorder(af.flat(af.to_array(p2_expected)),
                             2, 3, 0, 1
                            )
                         
    p3_expected = af.reorder(af.flat(af.to_array(p3_expected)),
                             2, 3, 0, 1
                            )

    assert(af.sum(af.abs(p1_expected - p1)) == 0)
    assert(af.sum(af.abs(p2_expected - p2)) == 0)
    assert(af.sum(af.abs(p3_expected - p3)) == 0)
Пример #2
0
def test_dump_moments():
    test_obj = test()
    N_g      = test_obj.N_ghost

    dump_moments(test_obj, 'test_file')

    h5f          = h5py.File('test_file.h5', 'r')
    moments_read = h5f['moments'][:]
    h5f.close()

    moments_read = np.swapaxes(moments_read, 0, 1)

    print(moments_read.shape)
    print(compute_moments_imported(test_obj, 'density').shape)

    assert(af.sum(af.to_array(moments_read[:, :, 0]) - 
                  af.reorder(compute_moments_imported(test_obj, 'density'), 
                             1, 2, 0
                            )[N_g:-N_g, N_g:-N_g]
                 )==0
          )

    assert(af.sum(af.to_array(moments_read[:, :, 1]) - 
                  af.reorder(compute_moments_imported(test_obj, 'energy'),
                             1, 2, 0
                            )[N_g:-N_g, N_g:-N_g] 
                 )==0
          )
Пример #3
0
def calculate_density(f, vel_x):
  deltav           = af.sum(vel_x[0, 1]-vel_x[0, 0])
  value_of_density = af.sum(f, 1)*deltav
  
  af.eval(value_of_density)

  return(value_of_density)
Пример #4
0
    def center_of_mass(inarr):
        arr = af.abs(inarr)
        normalizer = af.sum(arr)
        t_dims = list(arr.dims())
        mod_dims = [None, None, None, None]
        for i in range(len(t_dims)):
            mod_dims[i] = 1
        com = []

        for dim in range(len(t_dims)):
            # swap
            mod_dims[dim] = t_dims[dim]
            t_dims[dim] = 1
            grid = af.iota(mod_dims[0],
                           mod_dims[1],
                           mod_dims[2],
                           mod_dims[3],
                           tile_dims=t_dims)
            #        print(grid)
            com.append(af.sum(grid * arr) / normalizer)
            # swap back
            t_dims[dim] = mod_dims[dim]
            mod_dims[dim] = 1

        return com
Пример #5
0
def fraction_finder(positions_x, positions_y, x_grid, y_grid, dx, dy):
    '''
    function fraction_finder(positions_x, positions_y, x_grid, y_grid, dx, dy)
    -----------------------------------------------------------------------
    Input variables: positions_x and length_domain_x

        positions_x: An one dimensional array of size equal to number of particles taken in the PIC code. 
        It contains the positions of particles in x direction.
        
        positions_y: An one dimensional array of size equal to number of particles taken in the PIC code. 
        It contains the positions of particles in y direction.
        
        x_grid, y_grid: This is an array denoting the position grid chosen in the PIC simulation in
        x and y directions respectively
        

        dx, dy: This is the distance between any two consecutive grid nodes of the position grid 
        in x and y directions respectively

    -----------------------------------------------------------------------    
    returns: x_frac, y_frac
        This function returns the fractions of grid cells needed to perform the 2D charge deposition 

    '''
    x_frac = (positions_x - af.sum(x_grid[0])) / dx
    y_frac = (positions_y - af.sum(y_grid[0])) / dy

    af.eval(x_frac, y_frac)

    return x_frac, y_frac
Пример #6
0
def polyval_2d(poly_2d, xi, eta):
    '''
    '''
    poly_2d_shape = poly_2d.shape
    poly_xy = af.tile(poly_2d, d0 = 1, d1 = 1, d2 = 1, d3 = xi.shape[0])
    poly_xy_shape = poly_xy.shape
    # print(poly_xy)

    xi_power = af.flip(af.range(poly_xy_shape[1], dtype = af.Dtype.u32))
    xi_power = af.tile(af.transpose(xi_power), d0 = poly_xy_shape[0])
    xi_power = af.tile(xi_power, d0 = 1, d1 = 1, d2 = xi.shape[0])

    eta_power = af.flip(af.range(poly_xy_shape[0], dtype = af.Dtype.u32))
    eta_power = af.tile(eta_power, d0 = 1, d1 = poly_xy_shape[1])
    eta_power = af.tile(eta_power, d0 = 1, d1 = 1, d2 = eta.shape[0])

    Xi = af.reorder(xi, d0 = 2, d1 = 1, d2 = 0)
    Xi = af.tile(Xi, d0 = poly_xy_shape[0], d1 = poly_xy_shape[1])
    Xi = af.pow(Xi, xi_power)
    Xi = af.reorder(Xi, d0 = 0, d1 = 1, d2 = 3, d3 = 2)
    # print(Xi)

    Eta = af.reorder(eta, d0 = 2, d1 = 1, d2 = 0)
    Eta = af.tile(Eta, d0 = poly_xy_shape[0], d1 = poly_xy_shape[1])
    Eta = af.pow(Eta, eta_power)
    Eta = af.reorder(Eta, d0 = 0, d1 = 1, d2 = 3, d3 = 2)
    # print(Eta)

    Xi_Eta = Xi * Eta

    poly_val = af.broadcast(multiply, poly_xy, Xi_Eta)
    poly_val = af.sum(af.sum(poly_val, dim = 1), dim = 0)
    poly_val = af.reorder(poly_val, d0 = 2, d1 = 3, d2 = 0, d3 = 1)

    return poly_val
Пример #7
0
def integrate(integrand_coeffs):
    '''
    Performs integration according to the given quadrature method
    by taking in the coefficients of the polynomial and the number of
    quadrature points.
    The number of quadrature points and the quadrature scheme are set
    in params.py module.
    
    Parameters
    ----------
    
    integrand_coeffs : arrayfire.Array [M N 1 1]
                       The coefficients of M number of polynomials of order N
                       arranged in a 2D array.
    Returns
    -------
    
    Integral : arrayfire.Array [M 1 1 1]
               The value of the definite integration performed using the
               specified quadrature method for M polynomials.

    '''

    integrand = integrand_coeffs

    if (params.scheme == 'gauss_quadrature'):
        #print('gauss_quad')

        gaussian_nodes = params.gauss_points
        Gauss_weights = params.gauss_weights

        nodes_tile = af.transpose(
            af.tile(gaussian_nodes, 1, integrand.shape[1]))
        power = af.flip(af.range(integrand.shape[1]))
        nodes_power = af.broadcast(utils.power, nodes_tile, power)
        weights_tile = af.transpose(
            af.tile(Gauss_weights, 1, integrand.shape[1]))
        nodes_weight = nodes_power * weights_tile

        value_at_gauss_nodes = af.matmul(integrand, nodes_weight)
        integral = af.sum(value_at_gauss_nodes, 1)

    if (params.scheme == 'lobatto_quadrature'):
        #print('lob_quad')

        lobatto_nodes = params.lobatto_quadrature_nodes
        Lobatto_weights = params.lobatto_weights_quadrature

        nodes_tile = af.transpose(af.tile(lobatto_nodes, 1,
                                          integrand.shape[1]))
        power = af.flip(af.range(integrand.shape[1]))
        nodes_power = af.broadcast(utils.power, nodes_tile, power)
        weights_tile = af.transpose(
            af.tile(Lobatto_weights, 1, integrand.shape[1]))
        nodes_weight = nodes_power * weights_tile

        value_at_lobatto_nodes = af.matmul(integrand, nodes_weight)
        integral = af.sum(value_at_lobatto_nodes, 1)

    return integral
def cost(Weights, X, Y, lambda_param=1.0):
    # Number of samples
    m = Y.dims()[0]

    dim0 = Weights.dims()[0]
    dim1 = Weights.dims()[1] if len(Weights.dims()) > 1 else None
    dim2 = Weights.dims()[2] if len(Weights.dims()) > 2 else None
    dim3 = Weights.dims()[3] if len(Weights.dims()) > 3 else None
    # Make the lambda corresponding to Weights(0) == 0
    lambdat = af.constant(lambda_param, dim0, dim1, dim2, dim3)

    # No regularization for bias weights
    lambdat[0, :] = 0

    # Get the prediction
    H = predict_prob(X, Weights)

    # Cost of misprediction
    Jerr = -1 * af.sum(Y * af.log(H) + (1 - Y) * af.log(1 - H), dim=0)

    # Regularization cost
    Jreg = 0.5 * af.sum(lambdat * Weights * Weights, dim=0)

    # Total cost
    J = (Jerr + Jreg) / m

    # Find the gradient of cost
    D = (H - Y)
    dJ = (af.matmulTN(X, D) + lambdat * Weights) / m

    return J, dJ
Пример #9
0
def test_fft_poisson():
    """
    This function tests that the FFT solver works as intended.
    We take an expression for density for which the fields can
    be calculated analytically, and check that the numerical
    solution as given by the FFT solver and the analytical
    solution correspond well with each other.
    """
    x_start = 0
    y_start = 0
    z_start = 0

    x_end = 1
    y_end = 2
    z_end = 3

    N_x = np.random.randint(16, 32)
    N_y = np.random.randint(16, 32)
    N_z = np.random.randint(16, 32)

    dx = (x_end - x_start) / N_x
    dy = (y_end - y_start) / N_y
    dz = (z_end - z_start) / N_z

    # Using a centered formulation for the grid points of x, y, z:
    x = x_start + (np.arange(N_x) + 0.5) * dx
    y = y_start + (np.arange(N_y) + 0.5) * dy
    z = z_start + (np.arange(N_z) + 0.5) * dz

    y, x, z = np.meshgrid(y, x, z)

    x = af.to_array(x)
    y = af.to_array(y)
    z = af.to_array(z)

    rho = af.sin(2 * np.pi * x + 4 * np.pi * y + 6 * np.pi * z)

    Ex_analytic = -(2 * np.pi) / (56 * np.pi**2) * \
                  af.cos(2 * np.pi * x + 4 * np.pi * y + 6 * np.pi * z)

    Ey_analytic = -(4 * np.pi) / (56 * np.pi**2) * \
                  af.cos(2 * np.pi * x + 4 * np.pi * y + 6 * np.pi * z)

    Ez_analytic = -(6 * np.pi) / (56 * np.pi**2) * \
                  af.cos(2 * np.pi * x + 4 * np.pi * y + 6 * np.pi * z)

    Ex_numerical, Ey_numerical, Ez_numerical = fft_poisson(rho, dx, dy, dz)

    # Checking that the L1 norm of error is at machine precision:
    Ex_err = af.sum(
        af.abs(Ex_numerical - Ex_analytic)) / Ex_analytic.elements()
    Ey_err = af.sum(
        af.abs(Ey_numerical - Ey_analytic)) / Ey_analytic.elements()
    Ez_err = af.sum(
        af.abs(Ez_numerical - Ez_analytic)) / Ez_analytic.elements()

    assert (Ex_err < 1e-14)
    assert (Ey_err < 1e-14)
    assert (Ez_err < 1e-14)
Пример #10
0
def calculate_vbulk(f, vel_x):
  deltav               = af.sum(vel_x[0, 1]-vel_x[0, 0])
  value_of_momentum    = af.sum(f*vel_x, 1)*deltav
  value_of_vbulk       = value_of_momentum/calculate_density(f, vel_x)
  
  af.eval(value_of_vbulk)
  
  return(value_of_vbulk)
Пример #11
0
def calculate_temperature(f, vel_x):
  deltav               = af.sum(vel_x[0, 1]-vel_x[0, 0])
  v_bulk               = af.tile(calculate_vbulk(f, vel_x), 1, N_velocity)
  value_of_temperature = af.sum(f*(vel_x-v_bulk)**2, 1)*deltav
  value_of_temperature = value_of_temperature/calculate_density(f, vel_x)
  
  af.eval(value_of_temperature)
  
  return(value_of_temperature)
Пример #12
0
def integrate_1d(polynomials, order, scheme = 'gauss'):
    '''
    Integrates single variables using the Gauss-Legendre or Gauss-Lobatto
    quadrature.

    Parameters
    ----------
    polynomials : af.Array [number_of_polynomials degree 1 1]
                  The polynomials to be integrated.

    order       : int
                  Order of the quadrature.

    scheme      : str
                  Possible options are

                  - ``gauss`` for using Gauss-Legendre quadrature
                  - ``lobatto`` for using Gauss-Lobatto quadrature

    Returns
    -------
    integral : af.Array [number_of_polynomials 1 1 1]
               The integral for the respective polynomials using the given
               quadrature scheme.
    '''
    integral = 0.0

    if scheme == 'gauss':

        N_g = order
        xi_gauss      = af.np_to_af_array(lagrange.gauss_nodes(N_g))
        gauss_weights = lagrange.gaussian_weights(N_g)

        polyval_gauss = polyval_1d(polynomials, xi_gauss)

        integral = af.sum(af.transpose(af.broadcast(multiply,
                                                    af.transpose(polyval_gauss),
                                                    gauss_weights)), dim = 1)

        return integral
        
    elif scheme == 'lobatto':
        N_l = order
        xi_lobatto      = lagrange.LGL_points(N_l)
        lobatto_weights = lagrange.lobatto_weights(N_l)

        polyval_lobatto = polyval_1d(polynomials, xi_lobatto)

        integral = af.sum(af.transpose(af.broadcast(multiply,
                                                    af.transpose(polyval_lobatto),
                                                    lobatto_weights)), dim = 1)

        return integral

    else:
        return -1.
Пример #13
0
def test_fdtd_mode1():

    error_B1 = np.zeros(3)
    error_B2 = np.zeros(3)
    error_E3 = np.zeros(3)

    N = 2**np.arange(5, 8)

    for i in range(N.size):

        obj = test(N[i])

        N_g = obj.N_ghost

        B1_fdtd = gauss1D(obj.q2[:, N_g:-N_g, N_g:-N_g], 0.1)
        B2_fdtd = gauss1D(obj.q1[:, N_g:-N_g, N_g:-N_g], 0.1)

        obj.yee_grid_EM_fields[3, N_g:-N_g, N_g:-N_g] = B1_fdtd
        obj.yee_grid_EM_fields[4, N_g:-N_g, N_g:-N_g] = B2_fdtd

        dt = obj.dq1 / 2
        time = np.arange(dt, 1 + dt, dt)

        E3_initial = obj.yee_grid_EM_fields[2].copy()
        B1_initial = obj.yee_grid_EM_fields[3].copy()
        B2_initial = obj.yee_grid_EM_fields[4].copy()

        obj.J1, obj.J2, obj.J3 = 0, 0, 0

        for time_index, t0 in enumerate(time):
            fdtd(obj, dt)

        error_B1[i] = af.sum(
            af.abs(obj.yee_grid_EM_fields[3, N_g:-N_g, N_g:-N_g] -
                   B1_initial[0, N_g:-N_g, N_g:-N_g])) / (
                       B1_initial.elements())

        error_B2[i] = af.sum(
            af.abs(obj.yee_grid_EM_fields[4, N_g:-N_g, N_g:-N_g] -
                   B2_initial[0, N_g:-N_g, N_g:-N_g])) / (
                       B2_initial.elements())

        error_E3[i] = af.sum(
            af.abs(obj.yee_grid_EM_fields[2, N_g:-N_g, N_g:-N_g] -
                   E3_initial[0, N_g:-N_g, N_g:-N_g])) / (
                       E3_initial.elements())

    poly_B1 = np.polyfit(np.log10(N), np.log10(error_B1), 1)
    poly_B2 = np.polyfit(np.log10(N), np.log10(error_B2), 1)
    poly_E3 = np.polyfit(np.log10(N), np.log10(error_E3), 1)

    assert (abs(poly_B1[0] + 3) < 0.6)
    assert (abs(poly_B2[0] + 3) < 0.6)
    assert (abs(poly_E3[0] + 2) < 0.6)
Пример #14
0
    def evolve_electrodynamic_fields(self, J1, J2, J3, dt):
        """
        Evolve the fields using FDTD.

        Parameters
        ----------

        J1 : af.Array
             Array which contains the J1 current for each species.        
        
        J2 : af.Array
             Array which contains the J2 current for each species.        
        
        J3 : af.Array
             Array which contains the J3 current for each species.        
        
        dt: double
            Timestep size
        """

        self.J1 = af.sum(J1, 1)
        self.J2 = af.sum(J2, 1)
        self.J3 = af.sum(J3, 1)

        self.current_values_to_yee_grid()

        # Here:
        # cell_centered_EM_fields[:3] is at n
        # cell_centered_EM_fields[3:] is at n+1/2
        # cell_centered_EM_fields_at_n_plus_half[3:] is at n-1/2

        self.cell_centered_EM_fields_at_n[:3] = self.cell_centered_EM_fields[:
                                                                             3]
        self.cell_centered_EM_fields_at_n[3:] = \
            0.5 * (  self.cell_centered_EM_fields_at_n_plus_half[3:]
                   + self.cell_centered_EM_fields[3:]
                  )

        self.cell_centered_EM_fields_at_n_plus_half[
            3:] = self.cell_centered_EM_fields[3:]

        fdtd(self, dt)
        self.yee_grid_to_cell_centered_grid()

        # Here
        # cell_centered_EM_fields[:3] is at n+1
        # cell_centered_EM_fields[3:] is at n+3/2

        self.cell_centered_EM_fields_at_n_plus_half[:3] = \
            0.5 * (  self.cell_centered_EM_fields_at_n[:3]
                   + self.cell_centered_EM_fields[:3]
                  )

        return
Пример #15
0
def check_error(params):
    error = np.zeros(N.size)

    for i in range(N.size):
        domain.N_p1 = int(N[i])
        domain.N_p2 = int(N[i])
        domain.N_p3 = int(N[i])

        # Defining the physical system to be solved:
        system = physical_system(domain, boundary_conditions, params,
                                 initialize, advection_terms,
                                 collision_operator.BGK, moments)

        # Declaring a linear system object which will evolve the defined physical system:
        nls = nonlinear_solver(system)

        # Time parameters:
        dt = 0.0001 * 32 / nls.N_p1
        t_final = 0.2

        time_array = np.arange(dt, t_final + dt, dt)

        if (time_array[-1] > t_final):
            time_array = np.delete(time_array, -1)

        # Finding final resting point of the blob:
        E1 = nls.fields_solver.cell_centered_EM_fields[0]
        E2 = nls.fields_solver.cell_centered_EM_fields[1]
        E3 = nls.fields_solver.cell_centered_EM_fields[2]

        B1 = nls.fields_solver.cell_centered_EM_fields[3]
        B2 = nls.fields_solver.cell_centered_EM_fields[4]
        B3 = nls.fields_solver.cell_centered_EM_fields[5]

        sol = odeint(dp_dt,
                     np.array([0, 0, 0]),
                     time_array,
                     args=(af.mean(E1), af.mean(E2), af.mean(E3), af.mean(B1),
                           af.mean(B2), af.mean(B3), af.sum(params.charge[0]),
                           af.sum(params.mass[0])),
                     atol=1e-12,
                     rtol=1e-12)

        f_reference = af.broadcast(initialize.initialize_f, nls.q1_center,
                                   nls.q2_center, nls.p1_center - sol[-1, 0],
                                   nls.p2_center - sol[-1, 1],
                                   nls.p3_center - sol[-1, 2], params)

        for time_index, t0 in enumerate(time_array):
            nls.strang_timestep(dt)

        error[i] = af.mean(af.abs(nls.f - f_reference))

    return (error)
Пример #16
0
def fraction_finder(x, y, x_grid, y_grid, dx_frac_finder, dy_frac_finder):

    # print('x_grid[0] is ', x_grid[0])

    x_frac = (x - af.sum(x_grid[0])) / dx_frac_finder
    # print('y_grid[0] is ', y_grid[0])
    # print(' (y - (y_grid[0])) / dy_frac_finder is ', (y - (y_grid[0])) / dy_frac_finder)
    y_frac = (y - af.sum(y_grid[0])) / dy_frac_finder

    af.eval(x_frac, y_frac)

    return x_frac, y_frac
Пример #17
0
def test_fdtd_mode2():

    error_E1 = np.zeros(3)
    error_E2 = np.zeros(3)
    error_B3 = np.zeros(3)

    N = 2**np.arange(5, 8)

    for i in range(N.size):

        obj = test(N[i])
        N_g = obj.N_ghost

        obj.yee_grid_EM_fields[0, N_g:-N_g, N_g:-N_g] = gauss1D(
            obj.q2[:, N_g:-N_g, N_g:-N_g], 0.1)
        obj.yee_grid_EM_fields[1, N_g:-N_g, N_g:-N_g] = gauss1D(
            obj.q1[:, N_g:-N_g, N_g:-N_g], 0.1)

        dt = obj.dq1 / 2
        time = np.arange(dt, 1 + dt, dt)

        B3_initial = obj.yee_grid_EM_fields[5].copy()
        E1_initial = obj.yee_grid_EM_fields[0].copy()
        E2_initial = obj.yee_grid_EM_fields[1].copy()

        obj.J1, obj.J2, obj.J3 = 0, 0, 0

        for time_index, t0 in enumerate(time):
            fdtd(obj, dt)

        error_E1[i] = af.sum(
            af.abs(obj.yee_grid_EM_fields[0, N_g:-N_g, N_g:-N_g] -
                   E1_initial[:, N_g:-N_g, N_g:-N_g])) / (
                       E1_initial.elements())

        error_E2[i] = af.sum(
            af.abs(obj.yee_grid_EM_fields[1, N_g:-N_g, N_g:-N_g] -
                   E2_initial[:, N_g:-N_g, N_g:-N_g])) / (
                       E2_initial.elements())

        error_B3[i] = af.sum(
            af.abs(obj.yee_grid_EM_fields[5, N_g:-N_g, N_g:-N_g] -
                   B3_initial[:, N_g:-N_g, N_g:-N_g])) / (
                       B3_initial.elements())

    poly_E1 = np.polyfit(np.log10(N), np.log10(error_E1), 1)
    poly_E2 = np.polyfit(np.log10(N), np.log10(error_E2), 1)
    poly_B3 = np.polyfit(np.log10(N), np.log10(error_B3), 1)

    assert (abs(poly_E1[0] + 3) < 0.4)
    assert (abs(poly_E2[0] + 3) < 0.4)
    assert (abs(poly_B3[0] + 2) < 0.4)
Пример #18
0
    def gaussian(dims, sigmas, **kwargs):
        alpha = 1.0
        grid = af.constant(1.0, dims[0], dims[1], dims[2])
        for i in range(len(sigmas)):
            multiplier = -0.5 * alpha / pow(sigmas[i], 2)
            exponent = af.pow((af.range(dims[0], dims[1], dims[2], dim=i) -
                               (dims[i] - 1) / 2.0), 2) * multiplier
            grid = grid * af.arith.exp(exponent)

        grid_tot = af.sum(af.sum(af.sum(grid, dim=0), dim=1), dim=2)
        grid_total = af.tile(grid_tot, dims[0], dims[1], dims[2])
        grid = grid / grid_total
        return grid
Пример #19
0
 def func(x0):
     fields              = self._scattering_obj.forward(x0, fx_illu, fy_illu)
     field_scattered     = self._defocus_obj.forward(field_scattered, self.prop_distances)
     field_measure       = self._crop_obj.forward(field_scattered)
     residual            = af.abs(field_measure) - amplitude
     function_value      = af.sum(residual*af.conjg(residual)).real
     return function_value
Пример #20
0
def lagrange_interpolation(fn_i):
    '''
    Finds the general interpolation of a function.
    
    Parameters
    ----------
    fn_i : af.Array [N N_LGL 1 1]
           Value of :math:`N` functions at the LGL points.
    
    Returns
    -------
    lagrange_interpolation : af.Array [N N_LGL 1 1]
                             :math:`N` interpolated polynomials for
                             :math:`N` functions.
    '''

    fn_i = af.transpose(af.reorder(fn_i, d0=2, d1=1, d2=0))
    lagrange_interpolation = af.broadcast(utils.multiply,
                                          params.lagrange_coeffs, fn_i)
    lagrange_interpolation = af.reorder(af.sum(lagrange_interpolation, dim=0),
                                        d0=2,
                                        d1=1,
                                        d2=0)

    return lagrange_interpolation
Пример #21
0
def input_info(A, Asp):
    m, n = A.dims()
    nnz = af.sum((A != 0))
    print("    matrix size:                %i x %i" %(m, n))
    print("    matrix sparsity:            %2.2f %%" %(100*nnz/n**2,))
    print("    dense matrix memory usage:  ")
    print("    sparse matrix memory usage: ")
Пример #22
0
 def _binObject(self, obj, adjoint=False):
     """
     function to bin the object by factor of slice_binning_factor
     """
     if self.slice_binning_factor == 1:
         return obj
     assert self.shape[2] >= 1
     if adjoint:
         obj_out = af.constant(0.0,
                               self._shape_full[0],
                               self._shape_full[1],
                               self._shape_full[2],
                               dtype=af_complex_datatype)
         for idx in range((self.shape[2] - 1) * self.slice_binning_factor,
                          -1, -self.slice_binning_factor):
             idx_slice = slice(
                 idx,
                 np.min([obj_out.shape[2],
                         idx + self.slice_binning_factor]))
             obj_out[:, :, idx_slice] = af.broadcast(
                 self.assign_broadcast, obj_out[:, :, idx_slice],
                 obj[:, :, idx // self.slice_binning_factor])
     else:
         obj_out = af.constant(0.0,
                               self.shape[0],
                               self.shape[1],
                               self.shape[2],
                               dtype=af_complex_datatype)
         for idx in range(0, obj.shape[2], self.slice_binning_factor):
             idx_slice = slice(
                 idx,
                 np.min([obj.shape[2], idx + self.slice_binning_factor]))
             obj_out[:, :, idx // self.slice_binning_factor] = af.sum(
                 obj[:, :, idx_slice], 2)
     return obj_out
Пример #23
0
def lobatto_quad_multivar_poly(poly_xi_eta, N_quad, advec_var):
    '''
    '''
    shape_poly_2d = shape(poly_xi_eta)

    xi_LGL  = lagrange.LGL_points(N_quad)
    eta_LGL = lagrange.LGL_points(N_quad)

    Xi, Eta = af_meshgrid(xi_LGL, eta_LGL)

    Xi  = af.flat(Xi)
    Eta = af.flat(Eta)

    w_i = lagrange.lobatto_weights(N_quad)
    w_j = lagrange.lobatto_weights(N_quad)

    W_i, W_j = af_meshgrid(w_i, w_j)

    W_i = af.tile(af.flat(W_i), d0 = 1, d1 = shape_poly_2d[2])
    W_j = af.tile(af.flat(W_j), d0 = 1, d1 = shape_poly_2d[2])

    P_xi_eta_quad_val = af.transpose(polyval_2d(poly_xi_eta, Xi, Eta))

    integral = af.sum(W_i * W_j * P_xi_eta_quad_val, dim = 0)

    return af.transpose(integral)
def log_loss(y_true, y_prob):
    """Compute Logistic loss for classification.
    Parameters
    ----------
    y_true : array-like or label indicator matrix
        Ground truth (correct) labels.
    y_prob : array-like of float, shape = (n_samples, n_classes)
        Predicted probabilities, as returned by a classifier's
        predict_proba method.
    Returns
    -------
    loss : float
        The degree to which the samples are correctly predicted.
    """
#    eps = np.finfo(y_prob.dtype).eps
#    y_prob = np.clip(y_prob, eps, 1 - eps)
#    if y_prob.shape[1] == 1:
#        y_prob = np.append(1 - y_prob, y_prob, axis=1)
#
#    if y_true.shape[1] == 1:
#        y_true = np.append(1 - y_true, y_true, axis=1)
#
#    return - xlogy(y_true, y_prob).sum() / y_prob.shape[0]

    eps = numpy.finfo(typemap(y_prob.dtype())).eps
    y_prob[y_prob < eps] = eps
    y_prob[y_prob > (1.0 - eps)] = 1.0 - eps

    if y_prob.numdims() == 1:
        y_prob = af.join(1, (1.0 - y_prob).as_type(y_prob.dtype()), y_prob)

    if y_true.numdims() == 1:
        y_true = af.join(1, (1.0 - y_true).as_type(y_true.dtype()), y_true)

    return - af.sum(af.flat(xlogy(y_true, y_prob))) / y_prob.shape[0]
Пример #25
0
def test_calculate_q():
    obj = test()
    q1, q2 = calculate_q_center(obj)

    q1_expected = obj.q1_start + \
        (0.5 + np.arange(-obj.N_ghost, obj.N_q1 + obj.N_ghost)) * obj.dq1
    q2_expected = obj.q2_start + \
        (0.5 + np.arange(-obj.N_ghost, obj.N_q2 + obj.N_ghost)) * obj.dq2

    q2_expected, q1_expected = np.meshgrid(q2_expected, q1_expected)

    q1_expected = af.reorder(af.to_array(q1_expected), 2, 0, 1)
    q2_expected = af.reorder(af.to_array(q2_expected), 2, 0, 1)

    assert (af.sum(af.abs(q1_expected - q1)) == 0)
    assert (af.sum(af.abs(q2_expected - q2)) == 0)
Пример #26
0
def sum(a: ndarray, axis: tp.Optional[int] = None) \
        -> tp.Union[numbers.Number, ndarray]:
    """
    Sum of array elements over a given axis.
    """

    return _wrap_af_array(af.sum(a._af_array, dim=axis))
Пример #27
0
def compute_electrostatic_fields(self, rho_hat):
    """
    Computes the electrostatic fields by making use of FFTs by solving
    the Poisson equation: div^2 phi = rho to return the FT of the 
    fields.

    Parameters
    ----------

    rho_hat : af.Array
              FT for the charge density for each of the species.
              shape:(1, N_s, N_q1, N_q2)
    """

    # Summing over all the species:
    phi_hat = multiply(af.sum(rho_hat, 1), 1 / (self.k_q1**2 + self.k_q2**2)) # (1, 1, N_q1, N_q2)

    # Setting the background electric potential to zero:
    phi_hat[: , :, 0, 0] = 0

    self.E1_hat = -phi_hat * 1j * self.k_q1 / self.params.eps
    self.E2_hat = -phi_hat * 1j * self.k_q2 / self.params.eps
    self.E3_hat = 0 * self.E1_hat 
    
    self.B1_hat = 0 * self.E1_hat
    self.B2_hat = 0 * self.E1_hat
    self.B3_hat = 0 * self.E1_hat

    af.eval(self.E1_hat, self.E2_hat, self.E3_hat,
            self.B1_hat, self.B2_hat, self.B3_hat
           )

    return
Пример #28
0
def lagrange_interpolation_u(u, gv):
    '''
    Calculates the coefficients of the Lagrange interpolation using
    the value of u at the mapped LGL points in the domain.
    The interpolation using the Lagrange basis polynomials is given by
    :math:`L_i(\\xi) u_i(\\xi)`
    Where L_i are the Lagrange basis polynomials and u_i is the value
    of u at the LGL points.
    
    Parameters
    ----------
    u : arrayfire.Array [N_LGL N_Elements 1 1]
        The value of u at the mapped LGL points.
        
    Returns
    -------
    lagrange_interpolated_coeffs : arrayfire.Array[1 N_LGL N_Elements 1]
                                   The coefficients of the polynomials obtained
                                   by Lagrange interpolation. Each polynomial
                                   is of order N_LGL - 1.
    '''
    lagrange_coeffs_tile = af.tile(gv.lagrange_coeffs, 1, 1,\
                                               params.N_Elements)
    reordered_u = af.reorder(u, 0, 2, 1)

    lagrange_interpolated_coeffs = af.sum(af.broadcast(utils.multiply,\
                                             reordered_u, lagrange_coeffs_tile), 0)

    return lagrange_interpolated_coeffs
Пример #29
0
def input_info(A, Asp):
    m, n = A.dims()
    nnz = af.sum((A != 0))
    print("    matrix size:                %i x %i" % (m, n))
    print("    matrix sparsity:            %2.2f %%" % (100 * nnz / n**2, ))
    print("    dense matrix memory usage:  ")
    print("    sparse matrix memory usage: ")
Пример #30
0
def matmul_3D(a, b):
    '''
    Finds the matrix multiplication of :math:`Q` pairs of matrices ``a`` and
    ``b``.

    Parameters
    ----------
    a : af.Array [M N Q 1]
        First set of :math:`Q` 2D arrays :math:`N \\neq 1` and :math:`M \\neq 1`.
    b : af.Array [N P Q 1]
        Second set of :math:`Q` 2D arrays :math:`P \\neq 1`.

    Returns
    -------
    matmul : af.Array [M P Q 1]
             Matrix multiplication of :math:`Q` sets of 2D arrays.
    '''
    shape_a = shape(a)
    shape_b = shape(b)

    P = shape_b[1]

    a = af.transpose(a)
    a = af.reorder(a, d0=0, d1=3, d2=2, d3=1)
    a = af.tile(a, d0=1, d1=P)
    b = af.tile(b, d0=1, d1=1, d2=1, d3=a.shape[3])

    matmul = af.sum(a * b, dim=0)
    matmul = af.reorder(matmul, d0=3, d1=1, d2=2, d3=0)

    return matmul
Пример #31
0
    def compute_electrostatic_fields(self, rho):

        # Summing for all species:
        rho = af.sum(rho, 1)
        if (self.params.fields_solver == 'fft'):
            fft_poisson(self, rho)
            communicate.communicate_fields(self)
            apply_bcs_fields(self)
Пример #32
0
def __index_shape__(A_shape, idx, del_singleton=True):
    shape = []
    for i in range(0,len(idx)):
        if(idx[i] is None):
            shape.append(0)
        elif(isinstance(idx[i],numbers.Number)):
            if del_singleton:
                # Remove dimensions indexed with a scalar
                continue
            else:
                shape.append(1)
        elif(isinstance(idx[i],arrayfire.index.Seq)):
            if(idx[i].s == arrayfire.af_span):
                shape.append(A_shape[i])
            else:
                shape.append(idx[i].size)
        elif(isinstance(idx[i],slice)):
            shape.append(__slice_len__(idx[i], pu.c2f(A_shape), i))
        elif(isinstance(idx[i], arrayfire.Array)):
            if idx[i].dtype() is arrayfire.Dtype.b8:
                shape.append(int(arrayfire.sum(idx[i])))
            else:
                shape.append(idx[i].elements())
        elif(isinstance(idx[i],arrayfire.index)):
            if(idx[i].isspan()):
                shape.append(A_shape[i])
            else:
                af_idx = idx[i].get()
                if(af_idx.isBatch):
                    raise ValueError
                if(af_idx.isSeq):
                    shape.append(arrayfire.seq(af_idx.seq()).size)
                else:
                    shape.append(af_idx.arr_elements())
        else:
            raise ValueError
    return pu.c2f(shape)
Пример #33
0
def test():
    print("\nTesting benchmark functions...")
    A, b, x0 = setup_input(n=50, sparsity=7)  # dense A
    Asp = to_sparse(A)
    x1, _ = calc_arrayfire(A, b, x0)
    x2, _ = calc_arrayfire(Asp, b, x0)
    if af.sum(af.abs(x1 - x2)/x2 > 1e-5):
        raise ValueError("arrayfire test failed")
    if np:
        An = to_numpy(A)
        bn = to_numpy(b)
        x0n = to_numpy(x0)
        x3, _ = calc_numpy(An, bn, x0n)
        if not np.allclose(x3, x1.to_list()):
            raise ValueError("numpy test failed")
    if sp:
        Asc = to_scipy_sparse(Asp)
        x4, _ = calc_scipy_sparse(Asc, bn, x0n)
        if not np.allclose(x4, x1.to_list()):
            raise ValueError("scipy.sparse test failed")
        x5, _ = calc_scipy_sparse_linalg_cg(Asc, bn, x0n)
        if not np.allclose(x5, x1.to_list()):
            raise ValueError("scipy.sparse.linalg.cg test failed")
    print("    all tests passed...")
Пример #34
0
def calc_pi_device(samples):
    x = randu(samples)
    y = randu(samples)
    return 4 * af.sum((x * x  + y * y) < 1) / samples
Пример #35
0
    def sum(self, s, axis):
        if self.dtype == numpy.bool:
            s = arrayfire.cast(s, pu.typemap(numpy.int64))
#            s = s.astype(pu.typemap(numpy.int64))
        return arrayfire.sum(s, dim=axis)
Пример #36
0
def simple_algorithm(verbose = False):
    display_func = _util.display_func(verbose)
    print_func   = _util.print_func(verbose)

    a = af.randu(3, 3)

    print_func(af.sum(a), af.product(a), af.min(a), af.max(a),
               af.count(a), af.any_true(a), af.all_true(a))

    display_func(af.sum(a, 0))
    display_func(af.sum(a, 1))

    display_func(af.product(a, 0))
    display_func(af.product(a, 1))

    display_func(af.min(a, 0))
    display_func(af.min(a, 1))

    display_func(af.max(a, 0))
    display_func(af.max(a, 1))

    display_func(af.count(a, 0))
    display_func(af.count(a, 1))

    display_func(af.any_true(a, 0))
    display_func(af.any_true(a, 1))

    display_func(af.all_true(a, 0))
    display_func(af.all_true(a, 1))

    display_func(af.accum(a, 0))
    display_func(af.accum(a, 1))

    display_func(af.sort(a, is_ascending=True))
    display_func(af.sort(a, is_ascending=False))

    b = (a > 0.1) * a
    c = (a > 0.4) * a
    d = b / c
    print_func(af.sum(d));
    print_func(af.sum(d, nan_val=0.0));
    display_func(af.sum(d, dim=0, nan_val=0.0));

    val,idx = af.sort_index(a, is_ascending=True)
    display_func(val)
    display_func(idx)
    val,idx = af.sort_index(a, is_ascending=False)
    display_func(val)
    display_func(idx)

    b = af.randu(3,3)
    keys,vals = af.sort_by_key(a, b, is_ascending=True)
    display_func(keys)
    display_func(vals)
    keys,vals = af.sort_by_key(a, b, is_ascending=False)
    display_func(keys)
    display_func(vals)

    c = af.randu(5,1)
    d = af.randu(5,1)
    cc = af.set_unique(c, is_sorted=False)
    dd = af.set_unique(af.sort(d), is_sorted=True)
    display_func(cc)
    display_func(dd)

    display_func(af.set_union(cc, dd, is_unique=True))
    display_func(af.set_union(cc, dd, is_unique=False))

    display_func(af.set_intersect(cc, cc, is_unique=True))
    display_func(af.set_intersect(cc, cc, is_unique=False))
Пример #37
0
#!/usr/bin/python
import arrayfire as arr

a = arr.random.rand(4,3)
b = arr.random.randn(3,5)
c = arr.dot(a,b)
d = arr.sum(c)
d0 = arr.sum(c, 0)
d1 = arr.sum(c, 1)

print(a)
print(b)
print(c)
print(d)
print(d0)
print(d1)
Пример #38
0
    A[1,:] = B[2,:]
    af.display(A)

    print("\n---- Bitwise operations\n")
    af.display(A & B)
    af.display(A | B)
    af.display(A ^ B)

    print("\n---- Transpose\n")
    af.display(A)
    af.display(af.transpose(A))

    print("\n---- Flip Vertically / Horizontally\n")
    af.display(A)
    af.display(af.flip(A, 0))
    af.display(af.flip(A, 1))

    print("\n---- Sum, Min, Max along row / columns\n")
    af.display(A)
    af.display(af.sum(A, 0))
    af.display(af.min(A, 0))
    af.display(af.max(A, 0))
    af.display(af.sum(A, 1))
    af.display(af.min(A, 1))
    af.display(af.max(A, 1))

    print("\n---- Get minimum with index\n")
    (min_val, min_idx) = af.imin(A, 0)
    af.display(min_val)
    af.display(min_idx)
#!/usr/bin/python
import arrayfire as af

a = af.randu(3, 3)

print(af.sum(a), af.product(a), af.min(a), af.max(a), af.count(a), af.any_true(a), af.all_true(a))

af.print_array(af.sum(a, 0))
af.print_array(af.sum(a, 1))

af.print_array(af.product(a, 0))
af.print_array(af.product(a, 1))

af.print_array(af.min(a, 0))
af.print_array(af.min(a, 1))

af.print_array(af.max(a, 0))
af.print_array(af.max(a, 1))

af.print_array(af.count(a, 0))
af.print_array(af.count(a, 1))

af.print_array(af.any_true(a, 0))
af.print_array(af.any_true(a, 1))

af.print_array(af.all_true(a, 0))
af.print_array(af.all_true(a, 1))

af.print_array(af.accum(a, 0))
af.print_array(af.accum(a, 1))