Пример #1
0
def test_easy_plot():

    thing = DataContainer(im=np.random.randn(30, 40),
                          line=np.sin(np.arange(100) / 10.),
                          struct={'video': np.random.randn(17, 20, 30)},
                          text='adsagfdsf',
                          number=5)
    ezplot(thing, hang=False)
Пример #2
0
def test_easy_plot():

    thing = DataContainer(
        im =np.random.randn(30, 40),
        line = np.sin(np.arange(100)/10.),
        struct = {'video': np.random.randn(17, 20, 30)},
        text = 'adsagfdsf',
        number = 5
        )
    ezplot(thing, hang = False)
Пример #3
0
def test_plot_wmat():

    wmat = np.random.randn(7, 28, 28)
    ezplot(wmat, hang=False)
Пример #4
0
        y_ts = y_ts[:n_test_samples]

    return DataSet(training_set=DataCollection(x_tr, y_tr), test_set=DataCollection(x_ts, y_ts), name = 'CIFAR-10')


def get_cifar_10_labels():
    return [
        'airplane',
        'automobile',
        'bird',
        'cat',
        'deer',
        'dog',
        'frog',
        'horse',
        'ship',
        'truck']


if __name__ == '__main__':

    from artemis.plotting.easy_plotting import ezplot

    dataset = get_cifar_10_dataset()
    n_samples = 100

    ezplot({
        'sampled training images': np.rollaxis(dataset.training_set.input[:n_samples], 1, 4),# np.swapaxes(dataset.training_set.input[:n_samples], 1, 3).reshape(10, 10, 32, 32, 3),
        'sampled training labels': dataset.training_set.target[:n_samples].reshape(10, 10)
        }, cmap = 'jet')
Пример #5
0
    return DataSet(training_set=DataCollection(x_tr, y_tr), test_set=DataCollection(x_ts, y_ts), name = 'CIFAR-10')


def get_cifar_10_labels():
    return [
        'airplane',
        'automobile',
        'bird',
        'cat',
        'deer',
        'dog',
        'frog',
        'horse',
        'ship',
        'truck']


if __name__ == '__main__':

    from artemis.plotting.easy_plotting import ezplot

    dataset = get_cifar_10_dataset()
    dataset = get_cifar_100_dataset()
    n_samples = 100

    ezplot({
        'sampled training images': np.rollaxis(dataset.training_set.input[:n_samples], 1, 4),# np.swapaxes(dataset.training_set.input[:n_samples], 1, 3).reshape(10, 10, 32, 32, 3),
        'sampled training labels': dataset.training_set.target[:n_samples].reshape(10, 10)
        }, cmap = 'jet')
    input("Enter to exit")
Пример #6
0
def test_plot_wmat():

    wmat = np.random.randn(7, 28, 28)
    ezplot(wmat, hang = False)