def plot_uncertainty_zenith_angular_distance(group): group = group.E_1PeV rec = DirectionReconstruction N = 2 # constants for uncertainty estimation # BEWARE: stations must be the same over all reconstruction tables used station = group.zenith_0.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) figure() graph = GraphArtist() # Uncertainty estimate x = linspace(0, deg2rad(45), 50) #x = array([pi / 8]) phis = linspace(-pi, pi, 50) y, y2 = [], [] for t in x: y.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2))) y2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2))) y = TIMING_ERROR * sqrt(array(y)) y2 = TIMING_ERROR * sqrt(array(y2)) ang_dist = sqrt((y * sin(x))**2 + y2**2) #plot(rad2deg(x), rad2deg(y), label="Estimate Phi") #plot(rad2deg(x), rad2deg(y2), label="Estimate Theta") plot(rad2deg(x), rad2deg(ang_dist), label="Angular distance") graph.plot(rad2deg(x), rad2deg(ang_dist), mark=None) print rad2deg(x) print rad2deg(y) print rad2deg(y2) print rad2deg(y * sin(x)) print rad2deg(ang_dist) # Labels etc. xlabel("Shower zenith angle [deg]") ylabel("Angular distance [deg]") graph.set_xlabel(r"Shower zenith angle [\si{\degree}]") graph.set_ylabel(r"Angular distance [\si{\degree}]") graph.set_ylimits(min=6) #title(r"$N_{MIP} \geq %d$" % N) #ylim(0, 100) #legend(numpoints=1) utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def plot_uncertainty_zenith_angular_distance(group): group = group.E_1PeV rec = DirectionReconstruction N = 2 # constants for uncertainty estimation # BEWARE: stations must be the same over all reconstruction tables used station = group.zenith_0.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) figure() graph = GraphArtist() # Uncertainty estimate x = linspace(0, deg2rad(45), 50) #x = array([pi / 8]) phis = linspace(-pi, pi, 50) y, y2 = [], [] for t in x: y.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2))) y2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2))) y = TIMING_ERROR * sqrt(array(y)) y2 = TIMING_ERROR * sqrt(array(y2)) ang_dist = sqrt((y * sin(x)) ** 2 + y2 ** 2) #plot(rad2deg(x), rad2deg(y), label="Estimate Phi") #plot(rad2deg(x), rad2deg(y2), label="Estimate Theta") plot(rad2deg(x), rad2deg(ang_dist), label="Angular distance") graph.plot(rad2deg(x), rad2deg(ang_dist), mark=None) print rad2deg(x) print rad2deg(y) print rad2deg(y2) print rad2deg(y * sin(x)) print rad2deg(ang_dist) # Labels etc. xlabel("Shower zenith angle [deg]") ylabel("Angular distance [deg]") graph.set_xlabel(r"Shower zenith angle [\si{\degree}]") graph.set_ylabel(r"Angular distance [\si{\degree}]") graph.set_ylimits(min=6) #title(r"$N_{MIP} \geq %d$" % N) #ylim(0, 100) #legend(numpoints=1) utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def plot_detection_efficiency(self): integrals, dens = self.get_integrals_and_densities() popt = self.full_fit_on_data(integrals, (1., 1., 5e3 / .32, 3.38 / 5000, 1.)) x, y, yerr = [], [], [] dens_bins = np.linspace(0, 10, 51) for low, high in zip(dens_bins[:-1], dens_bins[1:]): sel = integrals.compress((low <= dens) & (dens < high)) x.append((low + high) / 2) frac = self.determine_charged_fraction(sel, popt) y.append(frac) yerr.append(np.sqrt(frac * len(sel)) / len(sel)) print(low + high) / 2, len(sel) self.plot_full_spectrum_fit_in_density_range(sel, popt, low, high) print plt.figure() plt.errorbar(x, y, yerr, fmt='o', label='data', markersize=3.) popt, pcov = optimize.curve_fit(self.conv_p_detection, x, y, p0=(1., )) print "Sigma Gauss:", popt x2 = plt.linspace(0, 10, 101) plt.plot(x2, self.p_detection(x2), label='poisson') plt.plot(x2, self.conv_p_detection(x2, *popt), label='poisson/gauss') plt.xlabel("Charged particle density [$m^{-2}$]") plt.ylabel("Detection probability") plt.ylim(0, 1.) plt.legend(loc='best') utils.saveplot() graph = GraphArtist() graph.plot(x2, self.p_detection(x2), mark=None) graph.plot(x2, self.conv_p_detection(x2, *popt), mark=None, linestyle='dashed') graph.plot(x, y, yerr=yerr, linestyle=None) graph.set_xlabel(r"Charged particle density [\si{\per\square\meter}]") graph.set_ylabel("Detection probability") graph.set_xlimits(min=0) graph.set_ylimits(min=0) artist.utils.save_graph(graph, dirname='plots')
def plot_gamma_landau_fit(self): events = self.data.root.hisparc.cluster_kascade.station_601.events ph0 = events.col('integrals')[:, 0] bins = np.linspace(0, RANGE_MAX, N_BINS + 1) n, bins = np.histogram(ph0, bins=bins) x = (bins[:-1] + bins[1:]) / 2 p_gamma, p_landau = self.full_spectrum_fit( x, n, (1., 1.), (5e3 / .32, 3.38 / 5000, 1.)) print "FULL FIT" print p_gamma, p_landau n /= 10 p_gamma, p_landau = self.constrained_full_spectrum_fit( x, n, p_gamma, p_landau) print "CONSTRAINED FIT" print p_gamma, p_landau plt.figure() print self.calc_charged_fraction(x, n, p_gamma, p_landau) plt.plot(x * VNS, n) self.plot_landau_and_gamma(x, p_gamma, p_landau) #plt.plot(x, n - self.gamma_func(x, *p_gamma)) plt.xlabel("Pulse integral [V ns]") plt.ylabel("Count") plt.yscale('log') plt.xlim(0, 30) plt.ylim(1e1, 1e4) plt.legend() utils.saveplot() graph = GraphArtist('semilogy') graph.histogram(n, bins * VNS, linestyle='gray') self.artistplot_landau_and_gamma(graph, x, p_gamma, p_landau) graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]") graph.set_ylabel("Count") graph.set_xlimits(0, 30) graph.set_ylimits(1e1, 1e4) artist.utils.save_graph(graph, dirname='plots')
def plot_arrival_times(): graph = GraphArtist() figure() sim = data.root.showers.E_1PeV.zenith_22_5 t = get_front_arrival_time(sim, 20, 5, pi / 8) n, bins = histogram(t, bins=linspace(0, 50, 201)) mct = monte_carlo_timings(n, bins, 100000) n, bins, patches = hist(mct, bins=linspace(0, 20, 101), histtype='step') graph.histogram(n, bins, linestyle='black!50') mint = my_t_draw_something(data, 2, 100000) n, bins, patches = hist(mint, bins=linspace(0, 20, 101), histtype='step') graph.histogram(n, bins) xlabel("Arrival time [ns]") ylabel("Number of events") graph.set_xlabel(r"Arrival time [\si{\nano\second}]") graph.set_ylabel("Number of events") graph.set_xlimits(0, 20) graph.set_ylimits(min=0) graph.save('plots/SIM-T') print(median(t), median(mct), median(mint))
def plot_front_passage(): sim = data.root.showers.E_1PeV.zenith_0.shower_0 leptons = sim.leptons R = 40 dR = 2 low = R - dR high = R + dR global t t = leptons.read_where('(low < core_distance) & (core_distance <= high)', field='arrival_time') n, bins, patches = hist(t, bins=linspace(0, 30, 31), histtype='step') graph = GraphArtist() graph.histogram(n, bins) graph.set_xlabel(r"Arrival time [\si{\nano\second}]") graph.set_ylabel("Number of leptons") graph.set_ylimits(min=0) graph.set_xlimits(0, 30) graph.save('plots/front-passage')
def plot_detection_efficiency_vs_R_for_angles(N): figure() graph = GraphArtist() locations = iter(['right', 'left', 'below left']) positions = iter([.18, .14, .15]) bin_edges = linspace(0, 100, 20) x = (bin_edges[:-1] + bin_edges[1:]) / 2. for angle in [0, 22.5, 35]: angle_str = str(angle).replace('.', '_') shower_group = '/simulations/E_1PeV/zenith_%s' % angle_str efficiencies = [] for low, high in zip(bin_edges[:-1], bin_edges[1:]): shower_results = [] for shower in data.list_nodes(shower_group): sel_query = '(low <= r) & (r < high)' coinc_sel = shower.coincidences.read_where(sel_query) ids = coinc_sel['id'] obs_sel = shower.observables.read_coordinates(ids) assert (obs_sel['id'] == ids).all() o = obs_sel sel = obs_sel.compress((o['n1'] >= N) & (o['n3'] >= N) & (o['n4'] >= N)) shower_results.append(len(sel) / len(obs_sel)) efficiencies.append(mean(shower_results)) plot(x, efficiencies, label=r'$\theta = %s^\circ$' % angle) graph.plot(x, efficiencies, mark=None) graph.add_pin(r'\SI{%s}{\degree}' % angle, location=locations.next(), use_arrow=True, relative_position=positions.next()) xlabel("Core distance [m]") graph.set_xlabel(r"Core distance [\si{\meter}]") ylabel("Detection efficiency") graph.set_ylabel("Detection efficiency") #title(r"$N_{MIP} \geq %d$" % N) legend() graph.set_xlimits(0, 100) graph.set_ylimits(0, 1) utils.saveplot(N) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_uncertainty_size(group): group = group.E_1PeV rec = DirectionReconstruction N = 2 graph = GraphArtist() # constants for uncertainty estimation # BEWARE: stations must be the same shape(!) over all reconstruction tables used station = group.zenith_22_5.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) del r1, r2 figure() x, y, y2 = [], [], [] for size in [5, 10, 20]: x.append(size) if size != 10: table = group._f_getChild('zenith_22_5_size%d' % size) else: table = group._f_getChild('zenith_22_5') events = table.readWhere('min_n134 >= N') print size, len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append( (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append( (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) plot(x, rad2deg(y), '^', label="Theta") graph.plot(x, rad2deg(y), mark='o', linestyle=None) plot(x, rad2deg(y2), 'v', label="Phi") graph.plot(x, rad2deg(y2), mark='*', linestyle=None) print print "stationsize: size, theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print # Uncertainty estimate x = linspace(5, 20, 50) phis = linspace(-pi, pi, 50) y, y2 = [], [] for s in x: y.append( mean(rec.rel_phi_errorsq(pi / 8, phis, phi1, phi2, r1=s, r2=s))) y2.append( mean(rec.rel_theta1_errorsq(pi / 8, phis, phi1, phi2, r1=s, r2=s))) y = TIMING_ERROR * sqrt(array(y)) y2 = TIMING_ERROR * sqrt(array(y2)) plot(x, rad2deg(y), label="Estimate Phi") graph.plot(x, rad2deg(y), mark=None) plot(x, rad2deg(y2), label="Estimate Theta") graph.plot(x, rad2deg(y2), mark=None) # Labels etc. xlabel("Station size [m]") graph.set_xlabel(r"Station size [\si{\meter}]") ylabel("Angle reconstruction uncertainty [deg]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") graph.set_ylimits(0, 25) #title(r"$\theta = 22.5^\circ, N_{MIP} \geq %d$" % N) legend(numpoints=1) utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def plot_detection_efficiency_vs_R_for_angles(N): figure() graph = GraphArtist() locations = iter(['right', 'left', 'below left']) positions = iter([.18, .14, .15]) bin_edges = linspace(0, 100, 20) x = (bin_edges[:-1] + bin_edges[1:]) / 2. for angle in [0, 22.5, 35]: angle_str = str(angle).replace('.', '_') shower_group = '/simulations/E_1PeV/zenith_%s' % angle_str efficiencies = [] for low, high in zip(bin_edges[:-1], bin_edges[1:]): shower_results = [] for shower in data.listNodes(shower_group): sel_query = '(low <= r) & (r < high)' coinc_sel = shower.coincidences.readWhere(sel_query) ids = coinc_sel['id'] obs_sel = shower.observables.readCoordinates(ids) assert (obs_sel['id'] == ids).all() o = obs_sel sel = obs_sel.compress((o['n1'] >= N) & (o['n3'] >= N) & (o['n4'] >= N)) shower_results.append(len(sel) / len(obs_sel)) efficiencies.append(mean(shower_results)) plot(x, efficiencies, label=r'$\theta = %s^\circ$' % angle) graph.plot(x, efficiencies, mark=None) graph.add_pin(r'\SI{%s}{\degree}' % angle, location=locations.next(), use_arrow=True, relative_position=positions.next()) xlabel("Core distance [m]") graph.set_xlabel(r"Core distance [\si{\meter}]") ylabel("Detection efficiency") graph.set_ylabel("Detection efficiency") #title(r"$N_{MIP} \geq %d$" % N) legend() graph.set_xlimits(0, 100) graph.set_ylimits(0, 1) utils.saveplot(N) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def boxplot_theta_reconstruction_results_for_MIP(group, N): group = group.E_1PeV figure() angles = [0, 5, 10, 15, 22.5, 30, 35, 45] r_dtheta = [] d25, d50, d75 = [], [], [] for angle in angles: table = group._f_get_child('zenith_%s' % str(angle).replace('.', '_')) sel = table.read_where('min_n134 >= %d' % N) dtheta = sel[:]['reconstructed_theta'] - sel[:]['reference_theta'] r_dtheta.append(rad2deg(dtheta)) d25.append(scoreatpercentile(rad2deg(dtheta), 25)) d50.append(scoreatpercentile(rad2deg(dtheta), 50)) d75.append(scoreatpercentile(rad2deg(dtheta), 75)) fill_between(angles, d25, d75, color='0.75') plot(angles, d50, 'o-', color='black') xlabel(r"$\theta_{simulated}$ [deg]") ylabel(r"$\theta_{reconstructed} - \theta_{simulated}$ [deg]") #title(r"$N_{MIP} \geq %d$" % N) axhline(0, color='black') ylim(-10, 25) utils.saveplot(N) graph = GraphArtist() graph.draw_horizontal_line(0, linestyle='gray') graph.shade_region(angles, d25, d75) graph.plot(angles, d50, linestyle=None) graph.set_xlabel(r"$\theta_\mathrm{sim}$ [\si{\degree}]") graph.set_ylabel(r"$\theta_\mathrm{rec} - \theta_\mathrm{sim}$ [\si{\degree}]") graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N) graph.set_ylimits(-8, 22) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def boxplot_arrival_times(group, N): table = group.E_1PeV.zenith_0 sel = table.readWhere('min_n134 >= N') t1 = sel[:]['t1'] t3 = sel[:]['t3'] t4 = sel[:]['t4'] ts = concatenate([t1, t3, t4]) print "Median arrival time delay over all detected events", median(ts) figure() bin_edges = linspace(0, 100, 11) x, arrival_times = [], [] t25, t50, t75 = [], [], [] for low, high in zip(bin_edges[:-1], bin_edges[1:]): query = '(min_n134 >= N) & (low <= r) & (r < high)' sel = table.readWhere(query) t1 = sel[:]['t1'] t2 = sel[:]['t2'] ct1 = t1.compress((t1 > -999) & (t2 > -999)) ct2 = t2.compress((t1 > -999) & (t2 > -999)) ts = abs(ct2 - ct1) t25.append(scoreatpercentile(ts, 25)) t50.append(scoreatpercentile(ts, 50)) t75.append(scoreatpercentile(ts, 75)) x.append((low + high) / 2) fill_between(x, t25, t75, color='0.75') plot(x, t50, 'o-', color='black') xlabel("Core distance [m]") ylabel("Arrival time delay [ns]") #title(r"$N_{MIP} \geq %d, \quad \theta = 0^\circ$" % N) xticks(arange(0, 100.5, 10)) utils.savedata((x, t25, t50, t75), N) utils.saveplot(N) graph = GraphArtist() graph.shade_region(x, t25, t75) graph.plot(x, t50, linestyle=None) graph.set_xlabel(r"Core distance [\si{\meter}]") graph.set_ylabel( r"Arrival time difference $|t_2 - t_1|$ [\si{\nano\second}]") graph.set_xlimits(0, 100) graph.set_ylimits(min=0) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def boxplot_core_distances_for_mips(group): table = group.E_1PeV.zenith_22_5 figure() r_list = [] r25, r50, r75 = [], [], [] x = [] for N in range(1, 5): sel = table.readWhere('min_n134 >= N') r = sel[:]['r'] r_list.append(r) x.append(N) r25.append(scoreatpercentile(r, 25)) r50.append(scoreatpercentile(r, 50)) r75.append(scoreatpercentile(r, 75)) fill_between(x, r25, r75, color='0.75') plot(x, r50, 'o-', color='black') xticks(range(1, 5)) xlabel("Minimum number of particles") ylabel("Core distance [m]") #title(r"$\theta = 22.5^\circ$") utils.saveplot() graph = GraphArtist() graph.shade_region(x, r25, r75) graph.plot(x, r50, linestyle=None) graph.set_xlabel("Minimum number of particles") graph.set_ylabel(r"Core distance [\si{\meter}]") graph.set_ylimits(min=0) graph.set_xticks(range(5)) artist.utils.save_graph(graph, dirname='plots')
def boxplot_phi_reconstruction_results_for_MIP(group, N): table = group.E_1PeV.zenith_22_5 figure() bin_edges = linspace(-180, 180, 18) x, r_dphi = [], [] d25, d50, d75 = [], [], [] for low, high in zip(bin_edges[:-1], bin_edges[1:]): rad_low = deg2rad(low) rad_high = deg2rad(high) query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high)' sel = table.readWhere(query) dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi'] dphi = (dphi + pi) % (2 * pi) - pi r_dphi.append(rad2deg(dphi)) d25.append(scoreatpercentile(rad2deg(dphi), 25)) d50.append(scoreatpercentile(rad2deg(dphi), 50)) d75.append(scoreatpercentile(rad2deg(dphi), 75)) x.append((low + high) / 2) fill_between(x, d25, d75, color='0.75') plot(x, d50, 'o-', color='black') xlabel(r"$\phi_{simulated}$ [deg]") ylabel(r"$\phi_{reconstructed} - \phi_{simulated}$ [deg]") #title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ$" % N) xticks(linspace(-180, 180, 9)) axhline(0, color='black') ylim(-15, 15) utils.saveplot(N) graph = GraphArtist() graph.draw_horizontal_line(0, linestyle='gray') graph.shade_region(x, d25, d75) graph.plot(x, d50, linestyle=None) graph.set_xlabel(r"$\phi_\mathrm{sim}$ [\si{\degree}]") graph.set_ylabel(r"$\phi_\mathrm{rec} - \phi_\mathrm{sim}$ [\si{\degree}]") graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N) graph.set_xticks([-180, -90, '...', 180]) graph.set_xlimits(-180, 180) graph.set_ylimits(-17, 17) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def boxplot_theta_reconstruction_results_for_MIP(group, N): group = group.E_1PeV figure() angles = [0, 5, 10, 15, 22.5, 30, 35, 45] r_dtheta = [] d25, d50, d75 = [], [], [] for angle in angles: table = group._f_getChild('zenith_%s' % str(angle).replace('.', '_')) sel = table.readWhere('min_n134 >= %d' % N) dtheta = sel[:]['reconstructed_theta'] - sel[:]['reference_theta'] r_dtheta.append(rad2deg(dtheta)) d25.append(scoreatpercentile(rad2deg(dtheta), 25)) d50.append(scoreatpercentile(rad2deg(dtheta), 50)) d75.append(scoreatpercentile(rad2deg(dtheta), 75)) fill_between(angles, d25, d75, color='0.75') plot(angles, d50, 'o-', color='black') xlabel(r"$\theta_{simulated}$ [deg]") ylabel(r"$\theta_{reconstructed} - \theta_{simulated}$ [deg]") #title(r"$N_{MIP} \geq %d$" % N) axhline(0, color='black') ylim(-10, 25) utils.saveplot(N) graph = GraphArtist() graph.draw_horizontal_line(0, linestyle='gray') graph.shade_region(angles, d25, d75) graph.plot(angles, d50, linestyle=None) graph.set_xlabel(r"$\theta_\mathrm{sim}$ [\si{\degree}]") graph.set_ylabel( r"$\theta_\mathrm{rec} - \theta_\mathrm{sim}$ [\si{\degree}]") graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N) graph.set_ylimits(-8, 22) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_uncertainty_binsize(group): group = group.E_1PeV rec = DirectionReconstruction N = 2 graph = GraphArtist() # constants for uncertainty estimation # BEWARE: stations must be the same over all reconstruction tables used station = group.zenith_22_5.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) figure() x, y, y2 = [], [], [] for bin_size in [0, 1, 2.5, 5]: x.append(bin_size) if bin_size != 0: table = group._f_getChild('zenith_22_5_binned_randomized_%s' % str(bin_size).replace('.', '_')) else: table = group.zenith_22_5 events = table.readWhere('min_n134 >= 2') print bin_size, len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append( (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append( (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) plot(x, rad2deg(y), '^', label="Theta") graph.plot(x, rad2deg(y), mark='o', linestyle=None) plot(x, rad2deg(y2), 'v', label="Phi") graph.plot(x, rad2deg(y2), mark='*', linestyle=None) print print "binsize: size, theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print # Uncertainty estimate x = linspace(0, 5, 50) phis = linspace(-pi, pi, 50) y, y2 = [], [] phi_errorsq = mean(rec.rel_phi_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) theta_errorsq = mean( rec.rel_theta1_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) for t in x: y.append(sqrt((TIMING_ERROR**2 + t**2 / 12) * phi_errorsq)) y2.append(sqrt((TIMING_ERROR**2 + t**2 / 12) * theta_errorsq)) y = array(y) y2 = array(y2) plot(x, rad2deg(y), label="Estimate Phi") graph.plot(x, rad2deg(y), mark=None) plot(x, rad2deg(y2), label="Estimate Theta") graph.plot(x, rad2deg(y2), mark=None) # Labels etc. xlabel("Sampling time [ns]") graph.set_xlabel(r"Sampling time [\si{\nano\second}]") ylabel("Angle reconstruction uncertainty [deg]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") graph.set_ylimits(0, 20) #title(r"$\theta = 22.5^\circ, N_{MIP} \geq %d$" % N) legend(loc='upper left', numpoints=1) ylim(0, 20) xlim(-0.1, 5.5) utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def plot_uncertainty_mip(group): table = group.E_1PeV.zenith_22_5 rec = DirectionReconstruction # constants for uncertainty estimation station = table.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) R_list = get_median_core_distances_for_mips(group, range(1, 6)) figure() x, y, y2 = [], [], [] for N in range(1, 5): x.append(N) events = table.read_where('min_n134>=%d' % N) #query = '(n1 == N) & (n3 == N) & (n4 == N)' #vents = table.read_where(query) print len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) print "YYY", rad2deg(scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) plot(x, rad2deg(y), '^', label="Theta") plot(x, rad2deg(y2), 'v', label="Phi") Sx = x Sy = y Sy2 = y2 print print "mip: min_n134, theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print utils.savedata((x, y, y2)) # Uncertainty estimate x = [1, 2, 3, 4, 5] phis = linspace(-pi, pi, 50) phi_errsq = mean(rec.rel_phi_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) theta_errsq = mean(rec.rel_theta1_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) y = TIMING_ERROR * std_t(x) * sqrt(phi_errsq) y2 = TIMING_ERROR * std_t(x) * sqrt(theta_errsq) mc = my_std_t_for_R(data, x, R_list) for u, v in zip(mc, R_list): print v, u, sqrt(u ** 2 + 1.2 ** 2), sqrt((.66 * u) ** 2 + 1.2 ** 2) mc = sqrt(mc ** 2 + 1.2 ** 2) y3 = mc * sqrt(phi_errsq) y4 = mc * sqrt(theta_errsq) nx = linspace(1, 4, 100) y = spline(x, y, nx) y2 = spline(x, y2, nx) y3 = spline(x, y3, nx) y4 = spline(x, y4, nx) plot(nx, rad2deg(y), label="Gauss Phi") plot(nx, rad2deg(y2), label="Gauss Theta") plot(nx, rad2deg(y3), label="Monte Carlo Phi") plot(nx, rad2deg(y4), label="Monte Carlo Theta") # Labels etc. xlabel("Minimum number of particles") ylabel("Angle reconstruction uncertainty [deg]") #title(r"$\theta = 22.5^\circ$") legend(numpoints=1) xlim(.5, 4.5) utils.saveplot() print graph = GraphArtist() graph.plot(Sx, rad2deg(Sy), mark='o', linestyle='only marks') graph.plot(Sx, rad2deg(Sy2), mark='*', linestyle='only marks') graph.plot(nx, rad2deg(y), mark=None, linestyle='dashed,smooth') graph.plot(nx, rad2deg(y2), mark=None, linestyle='dashed,smooth') graph.set_xlabel("Minimum number of particles") graph.set_ylabel(r"Reconstruction uncertainty [\si{\degree}]") graph.set_xticks(range(1, 5)) graph.set_ylimits(0, 32) artist.utils.save_graph(graph, dirname='plots') graph.plot(nx, rad2deg(y3), mark=None, linestyle='smooth') graph.plot(nx, rad2deg(y4), mark=None, linestyle='smooth') artist.utils.save_graph(graph, suffix='full', dirname='plots')
def artistplot_reconstruction_efficiency_vs_R_for_angles(N): filename = 'DIR-plot_reconstruction_efficiency_vs_R_for_angles-%d.txt' % N all_data = loadtxt(os.path.join('plots/', filename)) graph = GraphArtist() locations = iter(['above right', 'below left', 'below left']) positions = iter([.9, .2, .2]) x = all_data[:, 0] for angle, efficiencies in zip([0, 22.5, 35], all_data[:, 1:].T): graph.plot(x, efficiencies, mark=None) graph.add_pin(r'\SI{%s}{\degree}' % angle, use_arrow=True, location=locations.next(), relative_position=positions.next()) graph.set_xlabel("Core distance [\si{\meter}]") graph.set_ylabel("Reconstruction efficiency") graph.set_xlimits(0, 100) graph.set_ylimits(max=1) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_uncertainty_size(group): group = group.E_1PeV rec = DirectionReconstruction N = 2 graph = GraphArtist() # constants for uncertainty estimation # BEWARE: stations must be the same shape(!) over all reconstruction tables used station = group.zenith_22_5.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) del r1, r2 figure() x, y, y2 = [], [], [] for size in [5, 10, 20]: x.append(size) if size != 10: table = group._f_get_child('zenith_22_5_size%d' % size) else: table = group._f_get_child('zenith_22_5') events = table.read_where('min_n134 >= N') print size, len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) plot(x, rad2deg(y), '^', label="Theta") graph.plot(x, rad2deg(y), mark='o', linestyle=None) plot(x, rad2deg(y2), 'v', label="Phi") graph.plot(x, rad2deg(y2), mark='*', linestyle=None) print print "stationsize: size, theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print # Uncertainty estimate x = linspace(5, 20, 50) phis = linspace(-pi, pi, 50) y, y2 = [], [] for s in x: y.append(mean(rec.rel_phi_errorsq(pi / 8, phis, phi1, phi2, r1=s, r2=s))) y2.append(mean(rec.rel_theta1_errorsq(pi / 8, phis, phi1, phi2, r1=s, r2=s))) y = TIMING_ERROR * sqrt(array(y)) y2 = TIMING_ERROR * sqrt(array(y2)) plot(x, rad2deg(y), label="Estimate Phi") graph.plot(x, rad2deg(y), mark=None) plot(x, rad2deg(y2), label="Estimate Theta") graph.plot(x, rad2deg(y2), mark=None) # Labels etc. xlabel("Station size [m]") graph.set_xlabel(r"Station size [\si{\meter}]") ylabel("Angle reconstruction uncertainty [deg]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") graph.set_ylimits(0, 25) #title(r"$\theta = 22.5^\circ, N_{MIP} \geq %d$" % N) legend(numpoints=1) utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def plot_uncertainty_core_distance(table): N = 2 THETA = deg2rad(22.5) DTHETA = deg2rad(5.) DN = .5 DR = 10 LOGENERGY = 15 DLOGENERGY = .5 figure() x, y, y2 = [], [], [] for R in range(0, 81, 20): x.append(R) events = table.read_where('(abs(min_n134 - N) <= DN) & (abs(reference_theta - THETA) <= DTHETA) & (abs(r - R) <= DR) & (abs(log10(k_energy) - LOGENERGY) <= DLOGENERGY)') print(len(events),) errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) print() print("R: theta_std, phi_std") for u, v, w in zip(x, y, y2): print(u, v, w) print() # # Simulation data sx, sy, sy2 = loadtxt(os.path.join(DATADIR, 'DIR-plot_uncertainty_core_distance.txt')) graph = GraphArtist() # Plots plot(x, rad2deg(y), '^-', label="Theta") graph.plot(x[:-1], rad2deg(y[:-1]), mark='o') plot(sx, rad2deg(sy), '^-', label="Theta (sim)") graph.plot(sx[:-1], rad2deg(sy[:-1]), mark='square') plot(x, rad2deg(y2), 'v-', label="Phi") graph.plot(x[:-1], rad2deg(y2[:-1]), mark='*') plot(sx, rad2deg(sy2), 'v-', label="Phi (sim)") graph.plot(sx[:-1], rad2deg(sy2[:-1]), mark='square*') # Labels etc. xlabel("Core distance [m] $\pm %d$" % DR) graph.set_xlabel(r"Core distance [\si{\meter}] $\pm \SI{%d}{\meter}$" % DR) ylabel("Angle reconstruction uncertainty [deg]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") title(r"$N_{MIP} = %d \pm %.1f, \theta = 22.5^\circ \pm %d^\circ, %.1f \leq \log(E) \leq %.1f$" % (N, DN, rad2deg(DTHETA), LOGENERGY - DLOGENERGY, LOGENERGY + DLOGENERGY)) ylim(ymin=0) graph.set_ylimits(min=0) xlim(-2, 62) legend(numpoints=1, loc='best') utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def boxplot_arrival_times(group, N): table = group.E_1PeV.zenith_0 sel = table.read_where('min_n134 >= N') t1 = sel[:]['t1'] t3 = sel[:]['t3'] t4 = sel[:]['t4'] ts = concatenate([t1, t3, t4]) print "Median arrival time delay over all detected events", median(ts) figure() bin_edges = linspace(0, 100, 11) x, arrival_times = [], [] t25, t50, t75 = [], [], [] for low, high in zip(bin_edges[:-1], bin_edges[1:]): query = '(min_n134 >= N) & (low <= r) & (r < high)' sel = table.read_where(query) t1 = sel[:]['t1'] t2 = sel[:]['t2'] ct1 = t1.compress((t1 > -999) & (t2 > -999)) ct2 = t2.compress((t1 > -999) & (t2 > -999)) ts = abs(ct2 - ct1) t25.append(scoreatpercentile(ts, 25)) t50.append(scoreatpercentile(ts, 50)) t75.append(scoreatpercentile(ts, 75)) x.append((low + high) / 2) fill_between(x, t25, t75, color='0.75') plot(x, t50, 'o-', color='black') xlabel("Core distance [m]") ylabel("Arrival time delay [ns]") #title(r"$N_{MIP} \geq %d, \quad \theta = 0^\circ$" % N) xticks(arange(0, 100.5, 10)) utils.savedata((x, t25, t50, t75), N) utils.saveplot(N) graph = GraphArtist() graph.shade_region(x, t25, t75) graph.plot(x, t50, linestyle=None) graph.set_xlabel(r"Core distance [\si{\meter}]") graph.set_ylabel(r"Arrival time difference $|t_2 - t_1|$ [\si{\nano\second}]") graph.set_xlimits(0, 100) graph.set_ylimits(min=0) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_uncertainty_mip(table): rec = DirectionReconstruction # constants for uncertainty estimation station = table.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) THETA = deg2rad(22.5) DTHETA = deg2rad(5.) DN = .1 LOGENERGY = 15 DLOGENERGY = .5 figure() x, y, y2 = [], [], [] for N in range(1, 6): x.append(N) events = table.read_where('(abs(min_n134 - N) <= DN) & (abs(reference_theta - THETA) <= DTHETA) & (abs(log10(k_energy) - LOGENERGY) <= DLOGENERGY)') print(len(events),) errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) print() print("mip: min_n134, theta_std, phi_std") for u, v, w in zip(x, y, y2): print(u, v, w) print() # Simulation data sx, sy, sy2 = loadtxt(os.path.join(DATADIR, 'DIR-plot_uncertainty_mip.txt')) # Uncertainty estimate ex = linspace(1, 5, 50) phis = linspace(-pi, pi, 50) phi_errsq = mean(rec.rel_phi_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) theta_errsq = mean(rec.rel_theta1_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) #ey = TIMING_ERROR * std_t(ex) * sqrt(phi_errsq) #ey2 = TIMING_ERROR * std_t(ex) * sqrt(theta_errsq) R_list = [30, 20, 16, 14, 12] with tables.open_file('master-ch4v2.h5') as data2: mc = my_std_t_for_R(data2, x, R_list) mc = sqrt(mc ** 2 + 1.2 ** 2 + 2.5 ** 2) print(mc) ey = mc * sqrt(phi_errsq) ey2 = mc * sqrt(theta_errsq) nx = linspace(1, 4, 100) ey = spline(x, ey, nx) ey2 = spline(x, ey2, nx) # Plots plot(x, rad2deg(y), '^', label="Theta") plot(sx, rad2deg(sy), '^', label="Theta (sim)") plot(nx, rad2deg(ey2))#, label="Estimate Theta") plot(x, rad2deg(y2), 'v', label="Phi") plot(sx, rad2deg(sy2), 'v', label="Phi (sim)") plot(nx, rad2deg(ey))#, label="Estimate Phi") # Labels etc. xlabel("$N_{MIP} \pm %.1f$" % DN) ylabel("Angle reconstruction uncertainty [deg]") title(r"$\theta = 22.5^\circ \pm %d^\circ \quad %.1f \leq \log(E) \leq %.1f$" % (rad2deg(DTHETA), LOGENERGY - DLOGENERGY, LOGENERGY + DLOGENERGY)) legend(numpoints=1) xlim(0.5, 4.5) utils.saveplot() print graph = GraphArtist() graph.plot(x, rad2deg(y), mark='o', linestyle=None) graph.plot(sx, rad2deg(sy), mark='square', linestyle=None) graph.plot(nx, rad2deg(ey2), mark=None) graph.plot(x, rad2deg(y2), mark='*', linestyle=None) graph.plot(sx, rad2deg(sy2), mark='square*', linestyle=None) graph.plot(nx, rad2deg(ey), mark=None) graph.set_xlabel(r"$N_\mathrm{MIP} \pm %.1f$" % DN) graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") graph.set_xlimits(max=4.5) graph.set_ylimits(0, 40) graph.set_xticks(range(5)) artist.utils.save_graph(graph, dirname='plots')
def plot_uncertainty_zenith(group): group = group.E_1PeV rec = DirectionReconstruction N = 2 graph = GraphArtist() # constants for uncertainty estimation # BEWARE: stations must be the same over all reconstruction tables used station = group.zenith_0.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) figure() x, y, y2 = [], [], [] for THETA in 0, 5, 10, 15, 22.5, 30, 35, 45: x.append(THETA) table = group._f_getChild('zenith_%s' % str(THETA).replace('.', '_')) events = table.readWhere('min_n134 >= N') print THETA, len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append( (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append( (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) plot(x, rad2deg(y), '^', label="Theta") graph.plot(x, rad2deg(y), mark='o', linestyle=None) # Azimuthal angle undefined for zenith = 0 plot(x[1:], rad2deg(y2[1:]), 'v', label="Phi") graph.plot(x[1:], rad2deg(y2[1:]), mark='*', linestyle=None) print print "zenith: theta, theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print utils.savedata((x, y, y2)) # Uncertainty estimate x = linspace(0, deg2rad(45), 50) phis = linspace(-pi, pi, 50) y, y2 = [], [] for t in x: y.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2))) y2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2))) y = TIMING_ERROR * sqrt(array(y)) y2 = TIMING_ERROR * sqrt(array(y2)) plot(rad2deg(x), rad2deg(y), label="Estimate Phi") graph.plot(rad2deg(x), rad2deg(y), mark=None) plot(rad2deg(x), rad2deg(y2), label="Estimate Theta") graph.plot(rad2deg(x), rad2deg(y2), mark=None) # Labels etc. xlabel("Shower zenith angle [deg]") graph.set_xlabel(r"Shower zenith angle [\si{\degree}]") ylabel("Angle reconstruction uncertainty [deg]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") #title(r"$N_{MIP} \geq %d$" % N) ylim(0, 100) graph.set_ylimits(0, 60) legend(numpoints=1) utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def boxplot_phi_reconstruction_results_for_MIP(table, N): figure() THETA = deg2rad(22.5) DTHETA = deg2rad(5.) bin_edges = linspace(-180, 180, 18) x, r_dphi = [], [] d25, d50, d75 = [], [], [] for low, high in zip(bin_edges[:-1], bin_edges[1:]): rad_low = deg2rad(low) rad_high = deg2rad(high) query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high) & (abs(reference_theta - THETA) <= DTHETA)' sel = table.read_where(query) dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi'] dphi = (dphi + pi) % (2 * pi) - pi r_dphi.append(rad2deg(dphi)) d25.append(scoreatpercentile(rad2deg(dphi), 25)) d50.append(scoreatpercentile(rad2deg(dphi), 50)) d75.append(scoreatpercentile(rad2deg(dphi), 75)) x.append((low + high) / 2) #boxplot(r_dphi, positions=x, widths=1 * (high - low), sym='') fill_between(x, d25, d75, color='0.75') plot(x, d50, 'o-', color='black') xlabel(r"$\phi_K$ [deg]") ylabel(r"$\phi_H - \phi_K$ [deg]") title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ \pm %d^\circ$" % (N, rad2deg(DTHETA))) xticks(linspace(-180, 180, 9)) axhline(0, color='black') utils.saveplot(N) graph = GraphArtist() graph.draw_horizontal_line(0, linestyle='gray') graph.shade_region(x, d25, d75) graph.plot(x, d50, linestyle=None) graph.set_xlabel(r"$\phi_K$ [\si{\degree}]") graph.set_ylabel(r"$\phi_H - \phi_K$ [\si{\degree}]") graph.set_xticks([-180, -90, '...', 180]) graph.set_xlimits(-180, 180) graph.set_ylimits(-23, 23) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def boxplot_core_distance_vs_time(): plt.figure() sim = data.root.showers.E_1PeV.zenith_0.shower_0 leptons = sim.leptons #bins = np.logspace(0, 2, 25) bins = np.linspace(0, 100, 15) x, arrival_time, widths = [], [], [] t25, t50, t75 = [], [], [] for low, high in zip(bins[:-1], bins[1:]): sel = leptons.read_where('(low < core_distance) & (core_distance <= high)') x.append(np.mean([low, high])) arrival_time.append(sel[:]['arrival_time']) widths.append((high - low) / 2) ts = sel[:]['arrival_time'] t25.append(scoreatpercentile(ts, 25)) t50.append(scoreatpercentile(ts, 50)) t75.append(scoreatpercentile(ts, 75)) fill_between(x, t25, t75, color='0.75') plot(x, t50, 'o-', color='black') plt.xlabel("Core distance [m]") plt.ylabel("Arrival time [ns]") #utils.title("Shower front timing structure") utils.saveplot() graph = GraphArtist() graph.plot(x, t50, linestyle=None) graph.shade_region(x, t25, t75) graph.set_xlabel(r"Core distance [\si{\meter}]") graph.set_ylabel(r"Arrival time [\si{\nano\second}]") graph.set_ylimits(0, 30) graph.set_xlimits(0, 100) graph.save('plots/front-passage-vs-R')
def plot_uncertainty_mip(group): table = group.E_1PeV.zenith_22_5 rec = DirectionReconstruction # constants for uncertainty estimation station = table.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) R_list = get_median_core_distances_for_mips(group, range(1, 6)) figure() x, y, y2 = [], [], [] for N in range(1, 5): x.append(N) events = table.readWhere('min_n134>=%d' % N) #query = '(n1 == N) & (n3 == N) & (n4 == N)' #vents = table.readWhere(query) print len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append( (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append( (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) print "YYY", rad2deg( scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) plot(x, rad2deg(y), '^', label="Theta") plot(x, rad2deg(y2), 'v', label="Phi") Sx = x Sy = y Sy2 = y2 print print "mip: min_n134, theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print utils.savedata((x, y, y2)) # Uncertainty estimate x = [1, 2, 3, 4, 5] phis = linspace(-pi, pi, 50) phi_errsq = mean(rec.rel_phi_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) theta_errsq = mean(rec.rel_theta1_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) y = TIMING_ERROR * std_t(x) * sqrt(phi_errsq) y2 = TIMING_ERROR * std_t(x) * sqrt(theta_errsq) mc = my_std_t_for_R(data, x, R_list) for u, v in zip(mc, R_list): print v, u, sqrt(u**2 + 1.2**2), sqrt((.66 * u)**2 + 1.2**2) mc = sqrt(mc**2 + 1.2**2) y3 = mc * sqrt(phi_errsq) y4 = mc * sqrt(theta_errsq) nx = linspace(1, 4, 100) y = spline(x, y, nx) y2 = spline(x, y2, nx) y3 = spline(x, y3, nx) y4 = spline(x, y4, nx) plot(nx, rad2deg(y), label="Gauss Phi") plot(nx, rad2deg(y2), label="Gauss Theta") plot(nx, rad2deg(y3), label="Monte Carlo Phi") plot(nx, rad2deg(y4), label="Monte Carlo Theta") # Labels etc. xlabel("Minimum number of particles") ylabel("Angle reconstruction uncertainty [deg]") #title(r"$\theta = 22.5^\circ$") legend(numpoints=1) xlim(.5, 4.5) utils.saveplot() print graph = GraphArtist() graph.plot(Sx, rad2deg(Sy), mark='o', linestyle='only marks') graph.plot(Sx, rad2deg(Sy2), mark='*', linestyle='only marks') graph.plot(nx, rad2deg(y), mark=None, linestyle='dashed,smooth') graph.plot(nx, rad2deg(y2), mark=None, linestyle='dashed,smooth') graph.set_xlabel("Minimum number of particles") graph.set_ylabel(r"Reconstruction uncertainty [\si{\degree}]") graph.set_xticks(range(1, 5)) graph.set_ylimits(0, 32) artist.utils.save_graph(graph, dirname='plots') graph.plot(nx, rad2deg(y3), mark=None, linestyle='smooth') graph.plot(nx, rad2deg(y4), mark=None, linestyle='smooth') artist.utils.save_graph(graph, suffix='full', dirname='plots')
def plot_pulseheight_histogram(data): events = data.root.hisparc.cluster_kascade.station_601.events ph = events.col('pulseheights') s = landau.Scintillator() mev_scale = 3.38 / 340 count_scale = 6e3 / .32 clf() n, bins, patches = hist(ph[:, 0], bins=arange(0, 1501, 10), histtype='step') x = linspace(0, 1500, 1500) plot(x, s.conv_landau_for_x(x, mev_scale=mev_scale, count_scale=count_scale)) plot(x, count_scale * s.landau_pdf(x * mev_scale)) ylim(ymax=25000) xlim(xmax=1500) # Remove one statistical fluctuation from data. It is not important # for the graph, but it detracts from the main message index = bins.searchsorted(370) n[index] = mean([n[index - 1], n[index + 1]]) graph = GraphArtist() n_trunc = where(n <= 100000, n, 100000) graph.histogram(n_trunc, bins, linestyle='gray') graph.add_pin('data', x=800, location='above right', use_arrow=True) graph.add_pin('$\gamma$', x=90, location='above right', use_arrow=True) graph.plot(x, s.conv_landau_for_x(x, mev_scale=mev_scale, count_scale=count_scale), mark=None) graph.add_pin('convolved Landau', x=450, location='above right', use_arrow=True) graph.plot(x, count_scale * s.landau_pdf(x * mev_scale), mark=None, linestyle='black') graph.add_pin('Landau', x=380, location='above right', use_arrow=True) graph.set_xlabel(r"Pulseheight [\adc{}]") graph.set_ylabel(r"Number of events") graph.set_xlimits(0, 1400) graph.set_ylimits(0, 21000) graph.save("plots/plot_pulseheight_histogram")
def plot_trace(station_group, idx): events = station_group.events blobs = station_group.blobs traces_idx = events[idx]['traces'] traces = get_traces(blobs, traces_idx) traces = array(traces) x = arange(traces.shape[1]) x *= 2.5 clf() plot(x, traces.T) xlim(0, 200) #line_styles = ['solid', 'dashed', 'dotted', 'dashdotted'] line_styles = ['black', 'black!80', 'black!60', 'black!40'] styles = (u for u in line_styles) graph = GraphArtist(width=r'.5\linewidth') for trace in traces: graph.plot(x, trace / 1000, mark=None, linestyle=styles.next()) graph.set_xlabel(r"Time [\si{\nano\second}]") graph.set_ylabel(r"Signal [\si{\volt}]") graph.set_xlimits(0, 200) graph.save('plots/traces')
def plot_uncertainty_zenith(table): rec = DirectionReconstruction # constants for uncertainty estimation station = table.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) N = 2 DTHETA = deg2rad(1.) DN = .1 LOGENERGY = 15 DLOGENERGY = .5 figure() rcParams['text.usetex'] = False x, y, y2 = [], [], [] for theta in 5, 10, 15, 22.5, 30, 35: x.append(theta) THETA = deg2rad(theta) events = table.readWhere( '(min_n134 >= N) & (abs(reference_theta - THETA) <= DTHETA) & (abs(log10(k_energy) - LOGENERGY) <= DLOGENERGY)' ) print theta, len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append( (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append( (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) print print "zenith: theta, theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print # Simulation data sx, sy, sy2 = loadtxt( os.path.join(DATADIR, 'DIR-plot_uncertainty_zenith.txt')) # Uncertainty estimate ex = linspace(0, deg2rad(35), 50) phis = linspace(-pi, pi, 50) ey, ey2, ey3 = [], [], [] for t in ex: ey.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2))) ey3.append( mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2)) * sin(t)**2) ey2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2))) ey = TIMING_ERROR * sqrt(array(ey)) ey3 = TIMING_ERROR * sqrt(array(ey3)) ey2 = TIMING_ERROR * sqrt(array(ey2)) graph = GraphArtist() # Plots plot(x, rad2deg(y), '^', label="Theta") graph.plot(x, rad2deg(y), mark='o', linestyle=None) #plot(sx, rad2deg(sy), '^', label="Theta (sim)") plot(rad2deg(ex), rad2deg(ey2)) #, label="Estimate Theta") graph.plot(rad2deg(ex), rad2deg(ey2), mark=None) # Azimuthal angle undefined for zenith = 0 plot(x[1:], rad2deg(y2[1:]), 'v', label="Phi") graph.plot(x[1:], rad2deg(y2[1:]), mark='*', linestyle=None) #plot(sx[1:], rad2deg(sy2[1:]), 'v', label="Phi (sim)") plot(rad2deg(ex), rad2deg(ey)) #, label="Estimate Phi") graph.plot(rad2deg(ex), rad2deg(ey), mark=None) #plot(rad2deg(ex), rad2deg(ey3), label="Estimate Phi * sin(Theta)") # Labels etc. xlabel(r"Shower zenith angle [deg $\pm %d^\circ$]" % rad2deg(DTHETA)) graph.set_xlabel( r"Shower zenith angle [\si{\degree}] $\pm \SI{%d}{\degree}$" % rad2deg(DTHETA)) ylabel("Angle reconstruction uncertainty [deg]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") title(r"$N_{MIP} \geq %d, \quad %.1f \leq \log(E) \leq %.1f$" % (N, LOGENERGY - DLOGENERGY, LOGENERGY + DLOGENERGY)) ylim(0, 60) graph.set_ylimits(0, 60) xlim(-.5, 37) legend(numpoints=1) if USE_TEX: rcParams['text.usetex'] = True utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def plot_uncertainty_core_distance(table): N = 2 THETA = deg2rad(22.5) DTHETA = deg2rad(5.) DN = .5 DR = 10 LOGENERGY = 15 DLOGENERGY = .5 figure() x, y, y2 = [], [], [] for R in range(0, 81, 20): x.append(R) events = table.readWhere( '(abs(min_n134 - N) <= DN) & (abs(reference_theta - THETA) <= DTHETA) & (abs(r - R) <= DR) & (abs(log10(k_energy) - LOGENERGY) <= DLOGENERGY)' ) print len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append( (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append( (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) print print "R: theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print # # Simulation data sx, sy, sy2 = loadtxt( os.path.join(DATADIR, 'DIR-plot_uncertainty_core_distance.txt')) graph = GraphArtist() # Plots plot(x, rad2deg(y), '^-', label="Theta") graph.plot(x[:-1], rad2deg(y[:-1]), mark='o') plot(sx, rad2deg(sy), '^-', label="Theta (sim)") graph.plot(sx[:-1], rad2deg(sy[:-1]), mark='square') plot(x, rad2deg(y2), 'v-', label="Phi") graph.plot(x[:-1], rad2deg(y2[:-1]), mark='*') plot(sx, rad2deg(sy2), 'v-', label="Phi (sim)") graph.plot(sx[:-1], rad2deg(sy2[:-1]), mark='square*') # Labels etc. xlabel("Core distance [m] $\pm %d$" % DR) graph.set_xlabel(r"Core distance [\si{\meter}] $\pm \SI{%d}{\meter}$" % DR) ylabel("Angle reconstruction uncertainty [deg]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") title( r"$N_{MIP} = %d \pm %.1f, \theta = 22.5^\circ \pm %d^\circ, %.1f \leq \log(E) \leq %.1f$" % (N, DN, rad2deg(DTHETA), LOGENERGY - DLOGENERGY, LOGENERGY + DLOGENERGY)) ylim(ymin=0) graph.set_ylimits(min=0) xlim(-2, 62) legend(numpoints=1, loc='best') utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def plot_full_spectrum_fit_in_density_range(self, sel, popt, low, high): bins = np.linspace(0, RANGE_MAX, N_BINS + 1) n, bins = np.histogram(sel, bins=bins) x = (bins[:-1] + bins[1:]) / 2 p_gamma, p_landau = self.constrained_full_spectrum_fit( x, n, popt[:2], popt[2:]) plt.figure() plt.plot(x * VNS, n, label='data') self.plot_landau_and_gamma(x, p_gamma, p_landau) y_charged = self.calc_charged_spectrum(x, n, p_gamma, p_landau) plt.plot(x * VNS, y_charged, label='charged particles') plt.yscale('log') plt.xlim(0, 50) plt.ylim(ymin=1) plt.xlabel("Pulse integral [V ns]") plt.ylabel("Count") plt.legend() suffix = '%.1f-%.1f' % (low, high) suffix = suffix.replace('.', '_') utils.saveplot(suffix) n = np.where(n > 0, n, 1e-99) y_charged = np.where(y_charged > 0, y_charged, 1e-99) graph = GraphArtist('semilogy') graph.histogram(n, bins * VNS, linestyle='gray') self.artistplot_alt_landau_and_gamma(graph, x, p_gamma, p_landau) graph.histogram(y_charged, bins * VNS) graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]") graph.set_ylabel("Count") graph.set_title( r"$\SI{%.1f}{\per\square\meter} \leq \rho_\mathrm{charged}$ < $\SI{%.1f}{\per\square\meter}$" % (low, high)) graph.set_xlimits(0, 30) graph.set_ylimits(1e0, 1e4) artist.utils.save_graph(graph, suffix, dirname='plots')
def boxplot_theta_reconstruction_results_for_MIP(table, N): figure() DTHETA = deg2rad(1.) angles = [0, 5, 10, 15, 22.5, 35] r_dtheta = [] x = [] d25, d50, d75 = [], [], [] for angle in angles: theta = deg2rad(angle) sel = table.readWhere( '(min_n134 >= N) & (abs(reference_theta - theta) <= DTHETA)') dtheta = rad2deg(sel[:]['reconstructed_theta'] - sel[:]['reference_theta']) r_dtheta.append(dtheta) d25.append(scoreatpercentile(dtheta, 25)) d50.append(scoreatpercentile(dtheta, 50)) d75.append(scoreatpercentile(dtheta, 75)) x.append(angle) #boxplot(r_dtheta, sym='', positions=angles, widths=2.) fill_between(x, d25, d75, color='0.75') plot(x, d50, 'o-', color='black') xlabel(r"$\theta_K$ [deg]") ylabel(r"$\theta_H - \theta_K$ [deg]") title(r"$N_{MIP} \geq %d$" % N) axhline(0, color='black') ylim(-20, 25) xlim(0, 35) utils.saveplot(N) graph = GraphArtist() graph.draw_horizontal_line(0, linestyle='gray') graph.shade_region(angles, d25, d75) graph.plot(angles, d50, linestyle=None) graph.set_xlabel(r"$\theta_K$ [\si{\degree}]") graph.set_ylabel(r"$\theta_H - \theta_K$ [\si{\degree}]") graph.set_ylimits(-5, 15) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_pulseheight_histogram(data): events = data.root.hisparc.cluster_kascade.station_601.events ph = events.col("pulseheights") s = landau.Scintillator() mev_scale = 3.38 / 340 count_scale = 6e3 / 0.32 clf() n, bins, patches = hist(ph[:, 0], bins=arange(0, 1501, 10), histtype="step") x = linspace(0, 1500, 1500) plot(x, s.conv_landau_for_x(x, mev_scale=mev_scale, count_scale=count_scale)) plot(x, count_scale * s.landau_pdf(x * mev_scale)) ylim(ymax=25000) xlim(xmax=1500) # Remove one statistical fluctuation from data. It is not important # for the graph, but it detracts from the main message index = bins.searchsorted(370) n[index] = mean([n[index - 1], n[index + 1]]) graph = GraphArtist() n_trunc = where(n <= 100000, n, 100000) graph.histogram(n_trunc, bins, linestyle="gray") graph.add_pin("data", x=800, location="above right", use_arrow=True) graph.add_pin("$\gamma$", x=90, location="above right", use_arrow=True) graph.plot(x, s.conv_landau_for_x(x, mev_scale=mev_scale, count_scale=count_scale), mark=None) graph.add_pin("convolved Landau", x=450, location="above right", use_arrow=True) graph.plot(x, count_scale * s.landau_pdf(x * mev_scale), mark=None, linestyle="black") graph.add_pin("Landau", x=380, location="above right", use_arrow=True) graph.set_xlabel(r"Pulseheight [\adc{}]") graph.set_ylabel(r"Number of events") graph.set_xlimits(0, 1400) graph.set_ylimits(0, 21000) graph.save("plots/plot_pulseheight_histogram")
def boxplot_phi_reconstruction_results_for_MIP(table, N): figure() THETA = deg2rad(22.5) DTHETA = deg2rad(5.) bin_edges = linspace(-180, 180, 18) x, r_dphi = [], [] d25, d50, d75 = [], [], [] for low, high in zip(bin_edges[:-1], bin_edges[1:]): rad_low = deg2rad(low) rad_high = deg2rad(high) query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high) & (abs(reference_theta - THETA) <= DTHETA)' sel = table.readWhere(query) dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi'] dphi = (dphi + pi) % (2 * pi) - pi r_dphi.append(rad2deg(dphi)) d25.append(scoreatpercentile(rad2deg(dphi), 25)) d50.append(scoreatpercentile(rad2deg(dphi), 50)) d75.append(scoreatpercentile(rad2deg(dphi), 75)) x.append((low + high) / 2) #boxplot(r_dphi, positions=x, widths=1 * (high - low), sym='') fill_between(x, d25, d75, color='0.75') plot(x, d50, 'o-', color='black') xlabel(r"$\phi_K$ [deg]") ylabel(r"$\phi_H - \phi_K$ [deg]") title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ \pm %d^\circ$" % (N, rad2deg(DTHETA))) xticks(linspace(-180, 180, 9)) axhline(0, color='black') utils.saveplot(N) graph = GraphArtist() graph.draw_horizontal_line(0, linestyle='gray') graph.shade_region(x, d25, d75) graph.plot(x, d50, linestyle=None) graph.set_xlabel(r"$\phi_K$ [\si{\degree}]") graph.set_ylabel(r"$\phi_H - \phi_K$ [\si{\degree}]") graph.set_xticks([-180, -90, '...', 180]) graph.set_xlimits(-180, 180) graph.set_ylimits(-23, 23) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_uncertainty_zenith(group): group = group.E_1PeV rec = DirectionReconstruction N = 2 graph = GraphArtist() # constants for uncertainty estimation # BEWARE: stations must be the same over all reconstruction tables used station = group.zenith_0.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) figure() x, y, y2 = [], [], [] for THETA in 0, 5, 10, 15, 22.5, 30, 35, 45: x.append(THETA) table = group._f_get_child('zenith_%s' % str(THETA).replace('.', '_')) events = table.read_where('min_n134 >= N') print THETA, len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) plot(x, rad2deg(y), '^', label="Theta") graph.plot(x, rad2deg(y), mark='o', linestyle=None) # Azimuthal angle undefined for zenith = 0 plot(x[1:], rad2deg(y2[1:]), 'v', label="Phi") graph.plot(x[1:], rad2deg(y2[1:]), mark='*', linestyle=None) print print "zenith: theta, theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print utils.savedata((x, y, y2)) # Uncertainty estimate x = linspace(0, deg2rad(45), 50) phis = linspace(-pi, pi, 50) y, y2 = [], [] for t in x: y.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2))) y2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2))) y = TIMING_ERROR * sqrt(array(y)) y2 = TIMING_ERROR * sqrt(array(y2)) plot(rad2deg(x), rad2deg(y), label="Estimate Phi") graph.plot(rad2deg(x), rad2deg(y), mark=None) plot(rad2deg(x), rad2deg(y2), label="Estimate Theta") graph.plot(rad2deg(x), rad2deg(y2), mark=None) # Labels etc. xlabel("Shower zenith angle [deg]") graph.set_xlabel(r"Shower zenith angle [\si{\degree}]") ylabel("Angle reconstruction uncertainty [deg]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") #title(r"$N_{MIP} \geq %d$" % N) ylim(0, 100) graph.set_ylimits(0, 60) legend(numpoints=1) utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def plot_fsot_vs_lint_for_zenith(fsot, lint): bins = linspace(0, 35, 21) min_N = 1 x, f_y, f_y2, l_y, l_y2 = [], [], [], [], [] for low, high in zip(bins[:-1], bins[1:]): rad_low = deg2rad(low) rad_high = deg2rad(high) query = '(min_n134 >= min_N) & (rad_low <= reference_theta) & (reference_theta < rad_high)' f_sel = fsot.readWhere(query) l_sel = lint.readWhere(query) errors = f_sel['reconstructed_phi'] - f_sel['reference_phi'] errors2 = f_sel['reconstructed_theta'] - f_sel['reference_theta'] #f_y.append(std(errors)) #f_y2.append(std(errors2)) f_y.append( (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) f_y2.append( (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) errors = l_sel['reconstructed_phi'] - l_sel['reference_phi'] errors2 = l_sel['reconstructed_theta'] - l_sel['reference_theta'] #l_y.append(std(errors)) #l_y2.append(std(errors2)) l_y.append( (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) l_y2.append( (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) x.append((low + high) / 2) print x[-1], len(f_sel), len(l_sel) clf() plot(x, rad2deg(f_y), label="FSOT phi") plot(x, rad2deg(f_y2), label="FSOT theta") plot(x, rad2deg(l_y), label="LINT phi") plot(x, rad2deg(l_y2), label="LINT theta") legend() xlabel("Shower zenith angle [deg]") ylabel("Angle reconstruction uncertainty [deg]") title(r"$N_{MIP} \geq %d$" % min_N) utils.saveplot() graph = GraphArtist() graph.plot(x, rad2deg(f_y), mark=None) graph.plot(x, rad2deg(l_y), mark=None, linestyle='dashed') graph.plot(x, rad2deg(f_y2), mark=None) graph.plot(x, rad2deg(l_y2), mark=None, linestyle='dashed') graph.set_xlabel(r"Shower zenith angle [\si{\degree}]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") artist.utils.save_graph(graph, dirname='plots')
def plot_uncertainty_binsize(group): group = group.E_1PeV rec = DirectionReconstruction N = 2 graph = GraphArtist() # constants for uncertainty estimation # BEWARE: stations must be the same over all reconstruction tables used station = group.zenith_22_5.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) figure() x, y, y2 = [], [], [] for bin_size in [0, 1, 2.5, 5]: x.append(bin_size) if bin_size != 0: table = group._f_get_child('zenith_22_5_binned_randomized_%s' % str(bin_size).replace('.', '_')) else: table = group.zenith_22_5 events = table.read_where('min_n134 >= 2') print bin_size, len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) plot(x, rad2deg(y), '^', label="Theta") graph.plot(x, rad2deg(y), mark='o', linestyle=None) plot(x, rad2deg(y2), 'v', label="Phi") graph.plot(x, rad2deg(y2), mark='*', linestyle=None) print print "binsize: size, theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print # Uncertainty estimate x = linspace(0, 5, 50) phis = linspace(-pi, pi, 50) y, y2 = [], [] phi_errorsq = mean(rec.rel_phi_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) theta_errorsq = mean(rec.rel_theta1_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) for t in x: y.append(sqrt((TIMING_ERROR ** 2 + t ** 2 / 12) * phi_errorsq)) y2.append(sqrt((TIMING_ERROR ** 2 + t ** 2 / 12) * theta_errorsq)) y = array(y) y2 = array(y2) plot(x, rad2deg(y), label="Estimate Phi") graph.plot(x, rad2deg(y), mark=None) plot(x, rad2deg(y2), label="Estimate Theta") graph.plot(x, rad2deg(y2), mark=None) # Labels etc. xlabel("Sampling time [ns]") graph.set_xlabel(r"Sampling time [\si{\nano\second}]") ylabel("Angle reconstruction uncertainty [deg]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") graph.set_ylimits(0, 20) #title(r"$\theta = 22.5^\circ, N_{MIP} \geq %d$" % N) legend(loc='upper left', numpoints=1) ylim(0, 20) xlim(-0.1, 5.5) utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def plot_uncertainty_mip(table): rec = DirectionReconstruction # constants for uncertainty estimation station = table.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) THETA = deg2rad(22.5) DTHETA = deg2rad(5.) DN = .1 LOGENERGY = 15 DLOGENERGY = .5 figure() x, y, y2 = [], [], [] for N in range(1, 6): x.append(N) events = table.readWhere( '(abs(min_n134 - N) <= DN) & (abs(reference_theta - THETA) <= DTHETA) & (abs(log10(k_energy) - LOGENERGY) <= DLOGENERGY)' ) print len(events), errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append( (scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append( (scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) print print "mip: min_n134, theta_std, phi_std" for u, v, w in zip(x, y, y2): print u, v, w print # Simulation data sx, sy, sy2 = loadtxt(os.path.join(DATADIR, 'DIR-plot_uncertainty_mip.txt')) # Uncertainty estimate ex = linspace(1, 5, 50) phis = linspace(-pi, pi, 50) phi_errsq = mean(rec.rel_phi_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) theta_errsq = mean(rec.rel_theta1_errorsq(pi / 8, phis, phi1, phi2, r1, r2)) #ey = TIMING_ERROR * std_t(ex) * sqrt(phi_errsq) #ey2 = TIMING_ERROR * std_t(ex) * sqrt(theta_errsq) R_list = [30, 20, 16, 14, 12] with tables.openFile('master-ch4v2.h5') as data2: mc = my_std_t_for_R(data2, x, R_list) mc = sqrt(mc**2 + 1.2**2 + 2.5**2) print mc ey = mc * sqrt(phi_errsq) ey2 = mc * sqrt(theta_errsq) nx = linspace(1, 4, 100) ey = spline(x, ey, nx) ey2 = spline(x, ey2, nx) # Plots plot(x, rad2deg(y), '^', label="Theta") plot(sx, rad2deg(sy), '^', label="Theta (sim)") plot(nx, rad2deg(ey2)) #, label="Estimate Theta") plot(x, rad2deg(y2), 'v', label="Phi") plot(sx, rad2deg(sy2), 'v', label="Phi (sim)") plot(nx, rad2deg(ey)) #, label="Estimate Phi") # Labels etc. xlabel("$N_{MIP} \pm %.1f$" % DN) ylabel("Angle reconstruction uncertainty [deg]") title( r"$\theta = 22.5^\circ \pm %d^\circ \quad %.1f \leq \log(E) \leq %.1f$" % (rad2deg(DTHETA), LOGENERGY - DLOGENERGY, LOGENERGY + DLOGENERGY)) legend(numpoints=1) xlim(0.5, 4.5) utils.saveplot() print graph = GraphArtist() graph.plot(x, rad2deg(y), mark='o', linestyle=None) graph.plot(sx, rad2deg(sy), mark='square', linestyle=None) graph.plot(nx, rad2deg(ey2), mark=None) graph.plot(x, rad2deg(y2), mark='*', linestyle=None) graph.plot(sx, rad2deg(sy2), mark='square*', linestyle=None) graph.plot(nx, rad2deg(ey), mark=None) graph.set_xlabel(r"$N_\mathrm{MIP} \pm %.1f$" % DN) graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") graph.set_xlimits(max=4.5) graph.set_ylimits(0, 40) graph.set_xticks(range(5)) artist.utils.save_graph(graph, dirname='plots')
def boxplot_phi_reconstruction_results_for_MIP(group, N): table = group.E_1PeV.zenith_22_5 figure() bin_edges = linspace(-180, 180, 18) x, r_dphi = [], [] d25, d50, d75 = [], [], [] for low, high in zip(bin_edges[:-1], bin_edges[1:]): rad_low = deg2rad(low) rad_high = deg2rad(high) query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high)' sel = table.read_where(query) dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi'] dphi = (dphi + pi) % (2 * pi) - pi r_dphi.append(rad2deg(dphi)) d25.append(scoreatpercentile(rad2deg(dphi), 25)) d50.append(scoreatpercentile(rad2deg(dphi), 50)) d75.append(scoreatpercentile(rad2deg(dphi), 75)) x.append((low + high) / 2) fill_between(x, d25, d75, color='0.75') plot(x, d50, 'o-', color='black') xlabel(r"$\phi_{simulated}$ [deg]") ylabel(r"$\phi_{reconstructed} - \phi_{simulated}$ [deg]") #title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ$" % N) xticks(linspace(-180, 180, 9)) axhline(0, color='black') ylim(-15, 15) utils.saveplot(N) graph = GraphArtist() graph.draw_horizontal_line(0, linestyle='gray') graph.shade_region(x, d25, d75) graph.plot(x, d50, linestyle=None) graph.set_xlabel(r"$\phi_\mathrm{sim}$ [\si{\degree}]") graph.set_ylabel(r"$\phi_\mathrm{rec} - \phi_\mathrm{sim}$ [\si{\degree}]") graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N) graph.set_xticks([-180, -90, '...', 180]) graph.set_xlimits(-180, 180) graph.set_ylimits(-17, 17) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_detection_efficiency(self): integrals, dens = self.get_integrals_and_densities() popt = self.full_fit_on_data(integrals, (1., 1., 5e3 / .32, 3.38 / 5000, 1.)) x, y, yerr = [], [], [] dens_bins = np.linspace(0, 10, 51) for low, high in zip(dens_bins[:-1], dens_bins[1:]): sel = integrals.compress((low <= dens) & (dens < high)) x.append((low + high) / 2) frac = self.determine_charged_fraction(sel, popt) y.append(frac) yerr.append(np.sqrt(frac * len(sel)) / len(sel)) print (low + high) / 2, len(sel) self.plot_full_spectrum_fit_in_density_range(sel, popt, low, high) print plt.figure() plt.errorbar(x, y, yerr, fmt='o', label='data', markersize=3.) popt, pcov = optimize.curve_fit(self.conv_p_detection, x, y, p0=(1.,)) print "Sigma Gauss:", popt x2 = plt.linspace(0, 10, 101) plt.plot(x2, self.p_detection(x2), label='poisson') plt.plot(x2, self.conv_p_detection(x2, *popt), label='poisson/gauss') plt.xlabel("Charged particle density [$m^{-2}$]") plt.ylabel("Detection probability") plt.ylim(0, 1.) plt.legend(loc='best') utils.saveplot() graph = GraphArtist() graph.plot(x2, self.p_detection(x2), mark=None) graph.plot(x2, self.conv_p_detection(x2, *popt), mark=None, linestyle='dashed') graph.plot(x, y, yerr=yerr, linestyle=None) graph.set_xlabel( r"Charged particle density [\si{\per\square\meter}]") graph.set_ylabel("Detection probability") graph.set_xlimits(min=0) graph.set_ylimits(min=0) artist.utils.save_graph(graph, dirname='plots')
def boxplot_core_distances_for_mips(group): table = group.E_1PeV.zenith_22_5 figure() r_list = [] r25, r50, r75 = [], [], [] x = [] for N in range(1, 5): sel = table.read_where('min_n134 >= N') r = sel[:]['r'] r_list.append(r) x.append(N) r25.append(scoreatpercentile(r, 25)) r50.append(scoreatpercentile(r, 50)) r75.append(scoreatpercentile(r, 75)) fill_between(x, r25, r75, color='0.75') plot(x, r50, 'o-', color='black') xticks(range(1, 5)) xlabel("Minimum number of particles") ylabel("Core distance [m]") #title(r"$\theta = 22.5^\circ$") utils.saveplot() graph = GraphArtist() graph.shade_region(x, r25, r75) graph.plot(x, r50, linestyle=None) graph.set_xlabel("Minimum number of particles") graph.set_ylabel(r"Core distance [\si{\meter}]") graph.set_ylimits(min=0) graph.set_xticks(range(5)) artist.utils.save_graph(graph, dirname='plots')
def plot_full_spectrum_fit_in_density_range(self, sel, popt, low, high): bins = np.linspace(0, RANGE_MAX, N_BINS + 1) n, bins = np.histogram(sel, bins=bins) x = (bins[:-1] + bins[1:]) / 2 p_gamma, p_landau = self.constrained_full_spectrum_fit(x, n, popt[:2], popt[2:]) plt.figure() plt.plot(x * VNS, n, label='data') self.plot_landau_and_gamma(x, p_gamma, p_landau) y_charged = self.calc_charged_spectrum(x, n, p_gamma, p_landau) plt.plot(x * VNS, y_charged, label='charged particles') plt.yscale('log') plt.xlim(0, 50) plt.ylim(ymin=1) plt.xlabel("Pulse integral [V ns]") plt.ylabel("Count") plt.legend() suffix = '%.1f-%.1f' % (low, high) suffix = suffix.replace('.', '_') utils.saveplot(suffix) n = np.where(n > 0, n, 1e-99) y_charged = np.where(y_charged > 0, y_charged, 1e-99) graph = GraphArtist('semilogy') graph.histogram(n, bins * VNS, linestyle='gray') self.artistplot_alt_landau_and_gamma(graph, x, p_gamma, p_landau) graph.histogram(y_charged, bins * VNS) graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]") graph.set_ylabel("Count") graph.set_title(r"$\SI{%.1f}{\per\square\meter} \leq \rho_\mathrm{charged}$ < $\SI{%.1f}{\per\square\meter}$" % (low, high)) graph.set_xlimits(0, 30) graph.set_ylimits(1e0, 1e4) artist.utils.save_graph(graph, suffix, dirname='plots')
def plot_gamma_landau_fit(self): events = self.data.root.hisparc.cluster_kascade.station_601.events ph0 = events.col('integrals')[:, 0] bins = np.linspace(0, RANGE_MAX, N_BINS + 1) n, bins = np.histogram(ph0, bins=bins) x = (bins[:-1] + bins[1:]) / 2 p_gamma, p_landau = self.full_spectrum_fit(x, n, (1., 1.), (5e3 / .32, 3.38 / 5000, 1.)) print "FULL FIT" print p_gamma, p_landau n /= 10 p_gamma, p_landau = self.constrained_full_spectrum_fit(x, n, p_gamma, p_landau) print "CONSTRAINED FIT" print p_gamma, p_landau plt.figure() print self.calc_charged_fraction(x, n, p_gamma, p_landau) plt.plot(x * VNS, n) self.plot_landau_and_gamma(x, p_gamma, p_landau) #plt.plot(x, n - self.gamma_func(x, *p_gamma)) plt.xlabel("Pulse integral [V ns]") plt.ylabel("Count") plt.yscale('log') plt.xlim(0, 30) plt.ylim(1e1, 1e4) plt.legend() utils.saveplot() graph = GraphArtist('semilogy') graph.histogram(n, bins * VNS, linestyle='gray') self.artistplot_landau_and_gamma(graph, x, p_gamma, p_landau) graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]") graph.set_ylabel("Count") graph.set_xlimits(0, 30) graph.set_ylimits(1e1, 1e4) artist.utils.save_graph(graph, dirname='plots')
def plot_uncertainty_zenith(table): rec = DirectionReconstruction # constants for uncertainty estimation station = table.attrs.cluster.stations[0] r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3) r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4) N = 2 DTHETA = deg2rad(1.) DN = .1 LOGENERGY = 15 DLOGENERGY = .5 figure() rcParams['text.usetex'] = False x, y, y2 = [], [], [] for theta in 5, 10, 15, 22.5, 30, 35: x.append(theta) THETA = deg2rad(theta) events = table.read_where('(min_n134 >= N) & (abs(reference_theta - THETA) <= DTHETA) & (abs(log10(k_energy) - LOGENERGY) <= DLOGENERGY)') print(theta, len(events),) errors = events['reference_theta'] - events['reconstructed_theta'] # Make sure -pi < errors < pi errors = (errors + pi) % (2 * pi) - pi errors2 = events['reference_phi'] - events['reconstructed_phi'] # Make sure -pi < errors2 < pi errors2 = (errors2 + pi) % (2 * pi) - pi #y.append(std(errors)) #y2.append(std(errors2)) y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) print() print("zenith: theta, theta_std, phi_std") for u, v, w in zip(x, y, y2): print(u, v, w) print() # Simulation data sx, sy, sy2 = loadtxt(os.path.join(DATADIR, 'DIR-plot_uncertainty_zenith.txt')) # Uncertainty estimate ex = linspace(0, deg2rad(35), 50) phis = linspace(-pi, pi, 50) ey, ey2, ey3 = [], [], [] for t in ex: ey.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2))) ey3.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2)) * sin(t) ** 2) ey2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2))) ey = TIMING_ERROR * sqrt(array(ey)) ey3 = TIMING_ERROR * sqrt(array(ey3)) ey2 = TIMING_ERROR * sqrt(array(ey2)) graph = GraphArtist() # Plots plot(x, rad2deg(y), '^', label="Theta") graph.plot(x, rad2deg(y), mark='o', linestyle=None) #plot(sx, rad2deg(sy), '^', label="Theta (sim)") plot(rad2deg(ex), rad2deg(ey2))#, label="Estimate Theta") graph.plot(rad2deg(ex), rad2deg(ey2), mark=None) # Azimuthal angle undefined for zenith = 0 plot(x[1:], rad2deg(y2[1:]), 'v', label="Phi") graph.plot(x[1:], rad2deg(y2[1:]), mark='*', linestyle=None) #plot(sx[1:], rad2deg(sy2[1:]), 'v', label="Phi (sim)") plot(rad2deg(ex), rad2deg(ey))#, label="Estimate Phi") graph.plot(rad2deg(ex), rad2deg(ey), mark=None) #plot(rad2deg(ex), rad2deg(ey3), label="Estimate Phi * sin(Theta)") # Labels etc. xlabel(r"Shower zenith angle [deg $\pm %d^\circ$]" % rad2deg(DTHETA)) graph.set_xlabel(r"Shower zenith angle [\si{\degree}] $\pm \SI{%d}{\degree}$" % rad2deg(DTHETA)) ylabel("Angle reconstruction uncertainty [deg]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") title(r"$N_{MIP} \geq %d, \quad %.1f \leq \log(E) \leq %.1f$" % (N, LOGENERGY - DLOGENERGY, LOGENERGY + DLOGENERGY)) ylim(0, 60) graph.set_ylimits(0, 60) xlim(-.5, 37) legend(numpoints=1) if USE_TEX: rcParams['text.usetex'] = True utils.saveplot() artist.utils.save_graph(graph, dirname='plots') print
def plot_R(): graph = GraphArtist(width=r'.45\linewidth') n, bins, patches = hist( data.root.simulations.E_1PeV.zenith_22_5.shower_0.coincidences.col( 'r'), bins=100, histtype='step') graph.histogram(n, bins, linestyle='black!50') shower = data.root.simulations.E_1PeV.zenith_22_5.shower_0 ids = shower.observables.get_where_list( '(n1 >= 1) & (n3 >= 1) & (n4 >= 1)') R = shower.coincidences.read_coordinates(ids, field='r') n, bins, patches = hist(R, bins=100, histtype='step') graph.histogram(n, bins) xlabel("Core distance [m]") ylabel("Number of events") print "mean", mean(R) print "median", median(R) graph.set_xlabel(r"Core distance [\si{\meter}]") graph.set_ylabel("Number of events") graph.set_xlimits(min=0) graph.set_ylimits(min=0) graph.save('plots/SIM-R')
def boxplot_theta_reconstruction_results_for_MIP(table, N): figure() DTHETA = deg2rad(1.) angles = [0, 5, 10, 15, 22.5, 35] r_dtheta = [] x = [] d25, d50, d75 = [], [], [] for angle in angles: theta = deg2rad(angle) sel = table.read_where('(min_n134 >= N) & (abs(reference_theta - theta) <= DTHETA)') dtheta = rad2deg(sel[:]['reconstructed_theta'] - sel[:]['reference_theta']) r_dtheta.append(dtheta) d25.append(scoreatpercentile(dtheta, 25)) d50.append(scoreatpercentile(dtheta, 50)) d75.append(scoreatpercentile(dtheta, 75)) x.append(angle) #boxplot(r_dtheta, sym='', positions=angles, widths=2.) fill_between(x, d25, d75, color='0.75') plot(x, d50, 'o-', color='black') xlabel(r"$\theta_K$ [deg]") ylabel(r"$\theta_H - \theta_K$ [deg]") title(r"$N_{MIP} \geq %d$" % N) axhline(0, color='black') ylim(-20, 25) xlim(0, 35) utils.saveplot(N) graph = GraphArtist() graph.draw_horizontal_line(0, linestyle='gray') graph.shade_region(angles, d25, d75) graph.plot(angles, d50, linestyle=None) graph.set_xlabel(r"$\theta_K$ [\si{\degree}]") graph.set_ylabel(r"$\theta_H - \theta_K$ [\si{\degree}]") graph.set_ylimits(-5, 15) artist.utils.save_graph(graph, suffix=N, dirname='plots')
def plot_arrival_times(): graph = GraphArtist() figure() sim = data.root.showers.E_1PeV.zenith_22_5 t = get_front_arrival_time(sim, 20, 5, pi / 8) n, bins = histogram(t, bins=linspace(0, 50, 201)) mct = monte_carlo_timings(n, bins, 100000) n, bins, patches = hist(mct, bins=linspace(0, 20, 101), histtype='step') graph.histogram(n, bins, linestyle='black!50') mint = my_t_draw_something(data, 2, 100000) n, bins, patches = hist(mint, bins=linspace(0, 20, 101), histtype='step') graph.histogram(n, bins) xlabel("Arrival time [ns]") ylabel("Number of events") graph.set_xlabel(r"Arrival time [\si{\nano\second}]") graph.set_ylabel("Number of events") graph.set_xlimits(0, 20) graph.set_ylimits(min=0) graph.save('plots/SIM-T') print median(t), median(mct), median(mint)
def plot_fsot_vs_lint_for_zenith(fsot, lint): bins = linspace(0, 35, 21) min_N = 1 x, f_y, f_y2, l_y, l_y2 = [], [], [], [], [] for low, high in zip(bins[:-1], bins[1:]): rad_low = deg2rad(low) rad_high = deg2rad(high) query = '(min_n134 >= min_N) & (rad_low <= reference_theta) & (reference_theta < rad_high)' f_sel = fsot.read_where(query) l_sel = lint.read_where(query) errors = f_sel['reconstructed_phi'] - f_sel['reference_phi'] errors2 = f_sel['reconstructed_theta'] - f_sel['reference_theta'] #f_y.append(std(errors)) #f_y2.append(std(errors2)) f_y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) f_y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) errors = l_sel['reconstructed_phi'] - l_sel['reference_phi'] errors2 = l_sel['reconstructed_theta'] - l_sel['reference_theta'] #l_y.append(std(errors)) #l_y2.append(std(errors2)) l_y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2) l_y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2) x.append((low + high) / 2) print(x[-1], len(f_sel), len(l_sel)) clf() plot(x, rad2deg(f_y), label="FSOT phi") plot(x, rad2deg(f_y2), label="FSOT theta") plot(x, rad2deg(l_y), label="LINT phi") plot(x, rad2deg(l_y2), label="LINT theta") legend() xlabel("Shower zenith angle [deg]") ylabel("Angle reconstruction uncertainty [deg]") title(r"$N_{MIP} \geq %d$" % min_N) utils.saveplot() graph = GraphArtist() graph.plot(x, rad2deg(f_y), mark=None) graph.plot(x, rad2deg(l_y), mark=None, linestyle='dashed') graph.plot(x, rad2deg(f_y2), mark=None) graph.plot(x, rad2deg(l_y2), mark=None, linestyle='dashed') graph.set_xlabel(r"Shower zenith angle [\si{\degree}]") graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]") artist.utils.save_graph(graph, dirname='plots')
def plot_nearest_neighbors(data, limit=None): global coincidences hisparc_group = data.root.hisparc.cluster_kascade.station_601 kascade_group = data.root.kascade coincidences = KascadeCoincidences(data, hisparc_group, kascade_group, ignore_existing=True) #dt_opt = find_optimum_dt(coincidences, p0=-13, limit=1000) #print dt_opt graph = GraphArtist(axis='semilogy') styles = iter(['solid', 'dashed', 'dashdotted']) uncorrelated = None figure() #for shift in -12, -13, dt_opt, -14: for shift in -12, -13, -14: print "Shifting", shift coincidences.search_coincidences(shift, dtlimit=1, limit=limit) print "." dts = coincidences.coincidences['dt'] n, bins, p = hist(abs(dts) / 1e9, bins=linspace(0, 1, 101), histtype='step', label='%.3f s' % shift) n = [u if u else 1e-99 for u in n] graph.histogram(n, bins, linestyle=styles.next() + ',gray') if uncorrelated is None: uncorrelated = n, bins y, bins = uncorrelated x = (bins[:-1] + bins[1:]) / 2 f = lambda x, N, a: N * exp(-a * x) popt, pcov = curve_fit(f, x, y) plot(x, f(x, *popt), label=r"$\lambda = %.2f$ Hz" % popt[1]) graph.plot(x, f(x, *popt), mark=None) yscale('log') xlabel("Time difference [s]") graph.set_xlabel(r"Time difference [\si{\second}]") ylabel("Counts") graph.set_ylabel("Counts") legend() graph.set_ylimits(min=10) utils.saveplot() graph.save('plots/MAT-nearest-neighbors')
def plot_nearest_neighbors(data, limit=None): global coincidences hisparc_group = data.root.hisparc.cluster_kascade.station_601 kascade_group = data.root.kascade coincidences = KascadeCoincidences(data, hisparc_group, kascade_group, ignore_existing=True) #dt_opt = find_optimum_dt(coincidences, p0=-13, limit=1000) #print(dt_opt) graph = GraphArtist(axis='semilogy') styles = iter(['solid', 'dashed', 'dashdotted']) uncorrelated = None figure() #for shift in -12, -13, dt_opt, -14: for shift in -12, -13, -14: print("Shifting", shift) coincidences.search_coincidences(shift, dtlimit=1, limit=limit) print(".") dts = coincidences.coincidences['dt'] n, bins, p = hist(abs(dts) / 1e9, bins=linspace(0, 1, 101), histtype='step', label='%.3f s' % shift) n = [u if u else 1e-99 for u in n] graph.histogram(n, bins, linestyle=styles.next() + ',gray') if uncorrelated is None: uncorrelated = n, bins y, bins = uncorrelated x = (bins[:-1] + bins[1:]) / 2 f = lambda x, N, a: N * exp(-a * x) popt, pcov = curve_fit(f, x, y) plot(x, f(x, *popt), label=r"$\lambda = %.2f$ Hz" % popt[1]) graph.plot(x, f(x, *popt), mark=None) yscale('log') xlabel("Time difference [s]") graph.set_xlabel(r"Time difference [\si{\second}]") ylabel("Counts") graph.set_ylabel("Counts") legend() graph.set_ylimits(min=10) utils.saveplot() graph.save('plots/MAT-nearest-neighbors')
def plot_R(): graph = GraphArtist(width=r'.45\linewidth') n, bins, patches = hist(data.root.simulations.E_1PeV.zenith_22_5.shower_0.coincidences.col('r'), bins=100, histtype='step') graph.histogram(n, bins, linestyle='black!50') shower = data.root.simulations.E_1PeV.zenith_22_5.shower_0 ids = shower.observables.get_where_list('(n1 >= 1) & (n3 >= 1) & (n4 >= 1)') R = shower.coincidences.read_coordinates(ids, field='r') n, bins, patches = hist(R, bins=100, histtype='step') graph.histogram(n, bins) xlabel("Core distance [m]") ylabel("Number of events") print("mean", mean(R)) print("median", median(R)) graph.set_xlabel(r"Core distance [\si{\meter}]") graph.set_ylabel("Number of events") graph.set_xlimits(min=0) graph.set_ylimits(min=0) graph.save('plots/SIM-R')