Пример #1
0
def fit(ctx, fxyz, design_matrix, use_atomic_descriptors, only_use_species, y,
        normalized_by_size, prefix, test_ratio, learning_curve, lc_points):
    """
    Fit a machine learning model to the design matrix and labels.
    This command function evaluated before the specific ones,
    we setup the general stuff here, such as read the files.
    """
    if not fxyz and not design_matrix[0]:
        return
    if prefix is None: prefix = "ASAP-fit"

    ctx.obj['fit_options'] = {
        "prefix": prefix,
        "learning_curve": learning_curve,
        "lc_points": lc_points,
        "test_ratio": test_ratio
    }
    asapxyz, desc, _ = read_xyz_n_dm(fxyz, design_matrix,
                                     use_atomic_descriptors, only_use_species,
                                     False)

    try:
        import numpy as np
        y_all = np.genfromtxt(y, dtype=float)
    except:
        if use_atomic_descriptors:
            y_all = asapxyz.get_atomic_property(y, normalized_by_size)
        else:
            y_all = asapxyz.get_property(y, normalized_by_size)
    # print(y_all)

    from asaplib.data import Design_Matrix
    ctx.obj['dm'] = Design_Matrix(desc, y_all, True, test_ratio)
Пример #2
0
def main():
    """

    Test if Ridge regression is working.

    Parameters
    ----------
    fxyz: string giving location of xyz file
    prefix: string giving the filename prefix
    """
    fxyz = os.path.join(os.path.split(__file__)[0], 'small_molecules-SOAP.xyz')
    fmat = ['SOAP-n4-l3-c1.9-g0.23']
    fy = 'dft_formation_energy_per_atom_in_eV'
    prefix = "test-skrr"
    test_ratio = 0.05
    lc_points = 8
    lc_repeats = 8

    # try to read the xyz file
    asapxyz = ASAPXYZ(fxyz)
    desc, _ = asapxyz.get_descriptors(fmat, False)
    y_all = asapxyz.get_property(fy)
    # print(desc)

    dm = Design_Matrix(X=desc, y=y_all, whiten=True, test_ratio=test_ratio)

    # kernel, jitter, delta, sigma, sparse_mode="fps", n_sparse=None
    k_spec = {
        'k0': {
            "type": "linear"
        }
    }  # { 'k1': {"type": "polynomial", "d": power}}

    # if sigma is not set...
    sigma = 0.001 * np.std(y_all)
    krr = KRRSparse(0., None, sigma)
    skrr = SPARSE_KRR_Wrapper(k_spec, krr, sparse_mode="fps", n_sparse=-1)

    # fit the model
    dm.compute_fit(skrr, 'skrr', store_results=True, plot=True)

    # learning curve
    if lc_points > 1:
        dm.compute_learning_curve(skrr,
                                  'ridge_regression',
                                  lc_points=lc_points,
                                  lc_repeats=lc_repeats,
                                  randomseed=42,
                                  verbose=False)

    dm.save_state(prefix)
    plt.show()
Пример #3
0
def main():
    """

    Test if Ridge regression is working.

    Parameters
    ----------
    fxyz: string giving location of xyz file
    prefix: string giving the filename prefix
    """
    fxyz = os.path.join(os.path.split(__file__)[0], 'small_molecules-SOAP.xyz')
    fmat = ['SOAP-n4-l3-c1.9-g0.23']
    fy = 'dft_formation_energy_per_atom_in_eV'
    prefix = "test-rr"
    test_ratio = 0.05
    lc_points = 8
    lc_repeats = 8

    # try to read the xyz file
    asapxyz = ASAPXYZ(fxyz)
    desc, _ = asapxyz.get_descriptors(fmat, False)
    y_all = asapxyz.get_property(fy)
    # print(desc)

    dm = Design_Matrix(X=desc, y=y_all, whiten=True, test_ratio=test_ratio)

    # if sigma is not set...
    sigma = 0.001 * np.std(y_all)

    rr = RidgeRegression(sigma)

    # fit the model
    dm.compute_fit(rr, 'ridge_regression', store_results=True, plot=True)

    # learning curve
    if lc_points > 1:
        dm.compute_learning_curve(rr,
                                  'ridge_regression',
                                  lc_points=lc_points,
                                  lc_repeats=lc_repeats,
                                  randomseed=42,
                                  verbose=False)

    dm.save_state(prefix)
    plt.show()
def main(fmat, fxyz, fy, prefix, scale, test_ratio, sigma, lc_points,
         lc_repeats):
    """

    Parameters
    ----------
    fmat: Location of descriptor matrix file or name of the tags in ase xyz file. You can use gen_descriptors.py to compute it.
    fxyz: Location of xyz file for reading the properties.
    fy: Location of property list (1D-array of floats)
    prefix: filename prefix for learning curve figure
    scale: Scale the coordinates (True/False). Scaling highly recommanded.
    test_ratio: train/test ratio
    sigma: noise level in kernel ridge regression, default is 0.1% of the standard deviation of the data.
    lc_points : number of points on the learning curve
    lc_repeats : number of sub-sampling when compute the learning curve

    Returns
    -------

    Learning curve.

    """

    scale = bool(scale)

    # try to read the xyz file
    if fxyz != 'none':
        asapxyz = ASAPXYZ(fxyz)
        desc, _ = asapxyz.get_descriptors(fmat)
    # we can also load the descriptor matrix from a standalone file
    if os.path.isfile(fmat[0]):
        try:
            desc = np.genfromtxt(fmat[0], dtype=float)
            print("loaded the descriptor matrix from file: ", fmat)
        except:
            raise ValueError('Cannot load the descriptor matrix from file')
    if len(desc) == 0:
        raise ValueError(
            'Please supply descriptor in a xyz file or a standlone descriptor matrix'
        )
    print("shape of the descriptor matrix: ", np.shape(desc),
          "number of descriptors: ", np.shape(desc[0]))

    # read in the properties to be predicted
    y_all = []
    try:
        y_all = np.genfromtxt(fy, dtype=float)
    except:
        y_all = asapxyz.get_property(fy)

    dm = Design_Matrix(X=desc, y=y_all, whiten=True, test_ratio=test_ratio)

    # if sigma is not set...
    if sigma < 0:
        sigma = 0.001 * np.std(y_all)
    rr = RidgeRegression(sigma)

    # fit the model
    dm.compute_fit(rr, 'ridge_regression', store_results=True, plot=True)

    # learning curve
    if lc_points > 1:
        lc_scores = dm.compute_learning_curve(rr,
                                              'ridge_regression',
                                              lc_points=lc_points,
                                              lc_repeats=lc_repeats,
                                              randomseed=42,
                                              verbose=False)
        # make plot
        lc_scores.plot_learning_curve()
    plt.show()