Пример #1
0
Файл: stm.py Проект: lqcata/ase
    def initialize(self, energies, bias=0):
        """
            energies: list of energies 
            for which the transmission function should be evaluated.
            bias.
            Will precalculate the surface greenfunctions of the tip and
            surface.
        """
        self.bias = bias
        self.energies = energies
        nenergies = len(energies)
        pl1, pl2 = self.pl1, self.pl2
        nbf1, nbf2 = len(self.h1), len(self.h2)

        #periodic part of the tip
        hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1]
        hs1_dij = self.h10[:pl1, pl1:2 * pl1], self.s10[:pl1, pl1:2 * pl1]
        #coupling betwen per. and non. per part of the tip
        h1_im = np.zeros((pl1, nbf1), complex)
        s1_im = np.zeros((pl1, nbf1), complex)
        h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij
        hs1_dim = [h1_im, s1_im]

        #periodic part the surface
        hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2]
        hs2_dij = self.h20[pl2:2 * pl2, :pl2], self.s20[pl2:2 * pl2, :pl2]
        #coupling betwen per. and non. per part of the surface
        h2_im = np.zeros((pl2, nbf2), complex)
        s2_im = np.zeros((pl2, nbf2), complex)
        h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij
        hs2_dim = [h2_im, s2_im]

        #tip and surface greenfunction
        self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1)
        self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2)
        self.greenfunction1 = GreenFunction(
            self.h1 - self.bias * self.w * self.s1, self.s1,
            [self.selfenergy1], self.eta1)
        self.greenfunction2 = GreenFunction(
            self.h2 - self.bias * (self.w - 1) * self.s2, self.s2,
            [self.selfenergy2], self.eta2)

        #Shift the bands due to the bias.
        bias_shift1 = -bias * self.w
        bias_shift2 = -bias * (self.w - 1)
        self.selfenergy1.set_bias(bias_shift1)
        self.selfenergy2.set_bias(bias_shift2)

        #tip and surface greenfunction matrices.
        nbf1_small = nbf1  #XXX Change this for efficiency in the future
        nbf2_small = nbf2  #XXX -||-
        coupling_list1 = range(nbf1_small)  # XXX -||-
        coupling_list2 = range(nbf2_small)  # XXX -||-
        self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex)
        self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex)

        for e, energy in enumerate(self.energies):
            if self.log != None:  # and world.rank == 0:
                T = time.localtime()
                self.log.write(' %d:%02d:%02d, ' % (T[3], T[4], T[5]) +
                               '%d, %d, %02f\n' % (world.rank, e, energy))
            gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
            gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)

            gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
            gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)

            self.gft1_emm[e] = gft1_mm
            self.gft2_emm[e] = gft2_mm

            if self.log != None and world.rank == 0:
                self.log.flush()
Пример #2
0
    def initialize(self):
        if self.initialized:
            return

        print('# Initializing calculator...', file=self.log)

        p = self.input_parameters
        if p['s'] is None:
            p['s'] = np.identity(len(p['h']))

        identical_leads = False
        if p['h2'] is None:
            p['h2'] = p['h1']  # Lead2 is idendical to lead1
            identical_leads = True

        if p['s1'] is None:
            p['s1'] = np.identity(len(p['h1']))

        if identical_leads:
            p['s2'] = p['s1']
        else:
            if p['s2'] is None:
                p['s2'] = np.identity(len(p['h2']))

        h_mm = p['h']
        s_mm = p['s']
        pl1 = len(p['h1']) // 2
        pl2 = len(p['h2']) // 2
        h1_ii = p['h1'][:pl1, :pl1]
        h1_ij = p['h1'][:pl1, pl1:2 * pl1]
        s1_ii = p['s1'][:pl1, :pl1]
        s1_ij = p['s1'][:pl1, pl1:2 * pl1]
        h2_ii = p['h2'][:pl2, :pl2]
        h2_ij = p['h2'][pl2: 2 * pl2, :pl2]
        s2_ii = p['s2'][:pl2, :pl2]
        s2_ij = p['s2'][pl2: 2 * pl2, :pl2]

        if p['hc1'] is None:
            nbf = len(h_mm)
            h1_im = np.zeros((pl1, nbf), complex)
            s1_im = np.zeros((pl1, nbf), complex)
            h1_im[:pl1, :pl1] = h1_ij
            s1_im[:pl1, :pl1] = s1_ij
            p['hc1'] = h1_im
            p['sc1'] = s1_im
        else:
            h1_im = p['hc1']
            if p['sc1'] is not None:
                s1_im = p['sc1']
            else:
                s1_im = np.zeros(h1_im.shape, complex)
                p['sc1'] = s1_im

        if p['hc2'] is None:
            h2_im = np.zeros((pl2, nbf), complex)
            s2_im = np.zeros((pl2, nbf), complex)
            h2_im[-pl2:, -pl2:] = h2_ij
            s2_im[-pl2:, -pl2:] = s2_ij
            p['hc2'] = h2_im
            p['sc2'] = s2_im
        else:
            h2_im = p['hc2']
            if p['sc2'] is not None:
                s2_im = p['sc2']
            else:
                s2_im = np.zeros(h2_im.shape, complex)
                p['sc2'] = s2_im

        align_bf = p['align_bf']
        if align_bf is not None:
            diff = ((h_mm[align_bf, align_bf] - h1_ii[align_bf, align_bf]) /
                    s_mm[align_bf, align_bf])
            print('# Aligning scat. H to left lead H. diff=', diff,
                  file=self.log)
            h_mm -= diff * s_mm

        # Setup lead self-energies
        # All infinitesimals must be > 0
        assert np.all(np.array((p['eta'], p['eta1'], p['eta2'])) > 0.0)
        self.selfenergies = [LeadSelfEnergy((h1_ii, s1_ii),
                                            (h1_ij, s1_ij),
                                            (h1_im, s1_im),
                                            p['eta1']),
                             LeadSelfEnergy((h2_ii, s2_ii),
                                            (h2_ij, s2_ij),
                                            (h2_im, s2_im),
                                            p['eta2'])]
        box = p['box']
        if box is not None:
            print('Using box probe!')
            self.selfenergies.append(
                BoxProbe(eta=box[0], a=box[1], b=box[2], energies=box[3],
                         S=s_mm, T=0.3))

        # setup scattering green function
        self.greenfunction = GreenFunction(selfenergies=self.selfenergies,
                                           H=h_mm,
                                           S=s_mm,
                                           eta=p['eta'])

        self.initialized = True