Пример #1
0
def quench(atoms, name=None, fmax=0.05, method='QN'):
    """ Quench given Atoms object with given attached calculator. """
    if name == None:
        try:
            name = atoms.get_chemical_formula(mode="hill")
        except:
            raise ValueError('name not specified')
    traj = ase.Trajectory(name + '_quenching.trj', 'w', atoms)

    if method == 'QN':
        qn = ase.QuasiNewton(atoms)
    elif method == 'FIRE':
        qn = ase.FIRE(atoms)
    qn.attach(traj.write)
    qn.run(fmax=fmax)
    e = atoms.get_potential_energy()
    ase.write(name + '_quenched.xyz', atoms)
    return e
Пример #2
0
a = ase.molecule('C6H6')
a.center(vacuum=6.0)

c = Hotbit(elements={
    'H': dir2 + 'H-H.skf',
    'C': dir2 + 'C-C.skf'
},
           tables={
               'HH': dir2 + 'H-H.skf',
               'CH': dir2 + 'C-H.skf',
               'CC': dir2 + 'C-C.skf'
           },
           SCC=False)
a.set_calculator(c)

ase.FIRE(a).run(fmax=0.01)

ase.write('C6H6.cfg', a)

###

for i in c.el.get_present():
    el = c.el.get_element(i)
    sym = el.get_symbol()
    orbs = el.get_valence_orbitals()
    for orb in orbs:
        print sym, orb, el.get_epsilon(orb), el.get_epsilon(orb) * Hartree

x = np.linspace(1.0, 12.0, 1000)

y, dy = c.ia.h['CC'](x)
Пример #3
0
    def runopt_inner(name, CoS, ftol, maxit, callback, maxstep=0.2, **kwargs):

        global opt

        if name == 'scipy_lbfgsb':

            def fun(x):
                CoS.state_vec = x
                return CoS.obj_func()

            def fprime(x):
                CoS.state_vec = x
                # Attention: here it is expected that only one
                # gradient call per iteration step is done
                return CoS.obj_func_grad()

            class nums:
                def __init__(self):
                    pass

                def get_number_of_steps(self):
                    return lbfgs.n_function_evals

            opt = nums()

            opt2, energy, dict = lbfgs.fmin_l_bfgs_b(
                fun,
                CoS.get_state_as_array(),
                fprime=fprime,
                callback=callback,
                maxfun=maxit,
                pgtol=ftol,
                factr=10,  # stops when step is < factr*machine_precision
                maxstep=maxstep)
            return dict

        elif name == 'multiopt':
            from pts.cosopt.multiopt import MultiOpt
            opt = MultiOpt(CoS, maxstep=maxstep, **kwargs)
            opt.string = CoS.string
            opt.attach(lambda: callback(None), interval=1)
            opt.run(steps=max_it)  # convergence handled by callback
            return None
        elif name == 'conj_grad':
            from pts.cosopt.conj_grad import conj_grad_opt
            opt = conj_grad_opt(CoS, maxstep=maxstep, **kwargs)
            opt.attach(lambda: callback(None), interval=1)
            opt.run(steps=max_it)  # convergence handled by callback
            return None
        elif name == 'steep_des':
            from pts.cosopt.conj_grad import conj_grad_opt
            opt = conj_grad_opt(CoS,
                                maxstep=maxstep,
                                reduce_to_steepest_descent=True,
                                **kwargs)
            opt.attach(lambda: callback(None), interval=1)
            opt.run()  # convergence handled by callback
            return None
        elif name == 'fire':
            from pts.cosopt.fire import fire_opt
            opt = fire_opt(CoS, maxstep=maxstep, **kwargs)
            opt.attach(lambda: callback(None), interval=1)
            opt.run(steps=maxit)  # convergence handled by callback
            return None
        elif name[0:4] == 'ase_':

            if name == 'ase_lbfgs':
                opt = ase.LBFGS(CoS, maxstep=maxstep, **kwargs)
            elif name == 'ase_bfgs':
                opt = ase.BFGS(CoS, maxstep=maxstep, **kwargs)

            elif name == 'ase_lbfgs_line':
                opt = ase.LineSearchLBFGS(CoS, maxstep=maxstep)
            elif name == 'ase_fire':
                opt = ase.FIRE(CoS, maxmove=maxstep)
            elif name == 'ase_scipy_cg':
                opt = ase.SciPyFminCG(CoS)
            elif name == 'ase_scipy_lbfgsb':
                opt = pts.cosopt.optimizers.SciPyFminLBFGSB(CoS, alpha=400)
            else:
                assert False, ' '.join(
                    ["Unrecognised algorithm", name, "not in"] + names)

            opt.string = CoS.string

            # attach optimiser to print out each step in
            opt.attach(lambda: callback(None), interval=1)
            opt.run(fmax=ftol, steps=maxit)
            return None

        else:
            assert False, ' '.join(["Unrecognised algorithm", name, "not in"] +
                                   names)