Пример #1
0
def test_cutoff_mask_does_nothing_grow():
    cutoff_mask, _ = util.create_cutoff_mask(
        dummy_image, cutoff=65500, grow=True
    )
    healed_image = util.bfixpix(dummy_image, cutoff_mask, retdat=True)
    assert np.sum(healed_image) == dummy_sum
Пример #2
0
    twodspec.add_arc(
        os.path.join(HERE, "test_data", "v_a_20180810_13_1_0_1.fits.gz[10]"))


# Create some bad data
some_bad_data = copy.copy(image_fits.data)
len_x, len_y = image_fits.data.shape
random_x = np.random.choice(np.arange(len_x), size=10, replace=False)
random_y = np.random.choice(np.arange(len_y), size=10, replace=False)
for i, j in zip(random_x, random_y):
    some_bad_data[i, j] += 1e10

# Add a bad pixel on the spectrum
some_bad_data[130, 500] += 1e10

cmask, _ = util.create_cutoff_mask(image_fits.data, cutoff=1000)
bmask, _ = util.create_bad_pixel_mask(image_fits.data)
bad_mask = bmask & bmask


def test_add_bad_pixel_mask_numpy_array():
    twodspec = spectral_reduction.TwoDSpec(log_file_name=None)
    twodspec.add_bad_mask(bad_mask)


def test_add_bad_pixel_mask_hdu():
    twodspec = spectral_reduction.TwoDSpec(log_file_name=None)
    twodspec.add_bad_mask(fits.ImageHDU(bad_mask.astype("int")))


def test_add_bad_pixel_mask_hdu_list():
Пример #3
0
def test_cutoff_mask_list_grow():
    cutoff_mask, _ = util.create_cutoff_mask(
        dummy_image, cutoff=[0, 1000], grow=True
    )
    healed_image = util.bfixpix(dummy_image, cutoff_mask, retdat=True)
    assert np.sum(healed_image) == np.size(dummy_image)
Пример #4
0
def test_cutoff_mask_expect_fail_str():
    util.create_cutoff_mask(dummy_image, cutoff="10")
Пример #5
0
def test_cutoff_mask_expect_fail_list():
    util.create_cutoff_mask(dummy_image, cutoff=[0, 1000, 60000])
Пример #6
0
def test_cutoff_mask_1D_array():
    util.create_cutoff_mask(np.ones(100))
Пример #7
0
def test_cutoff_mask():
    cutoff_mask, _ = util.create_cutoff_mask(dummy_image, cutoff=60000)
    healed_image = util.bfixpix(dummy_image, cutoff_mask, retdat=True)
    assert np.sum(healed_image) == np.size(dummy_image)