Пример #1
0
    def cal_halpha(self, stock_id):

        stock_quote = StockAsset.get_stock(stock_id).quote
        close = stock_quote.tcloseaf
        close = close.replace(0.0, method='pad')
        ret = close.pct_change()

        sz = Asset.load_nav_series('120000016')
        bret = sz.pct_change()

        ret = ret.resample('m').sum().iloc[:-1]
        bret = bret.resample('m').sum().iloc[:-1]
        common_index = ret.index.intersection(bret.index)
        ret = ret.loc[common_index]
        bret = bret.loc[common_index]

        ser = pd.Series()

        if len(common_index) < 60:
            return ser

        for i in range(60, len(common_index)):

            tmp_dates = common_index[i - 59:i + 1]
            y = ret.loc[tmp_dates].values
            x = bret.loc[tmp_dates].values.reshape(-1, 1)
            mod = LinearRegression().fit(x, y)
            ser.loc[tmp_dates[-1]] = mod.intercept_

        today = get_today()
        ser.loc[today] = np.nan
        ser = ser.resample('d').last().fillna(method='pad')

        return ser
def load_corr(factor_ids, start_date, end_date):

    trade_dates = ATradeDate.trade_date(start_date, end_date)
    asset_navs = {}
    for factor_id in factor_ids:
        # asset_navs[factor_id] = CommandMarkowitz.load_nav_series(factor_id, reindex = trade_dates)
        asset_navs[factor_id] = Asset.load_nav_series(factor_id,
                                                      reindex=trade_dates)

    df_asset_navs = pd.DataFrame(asset_navs)
    # df_asset_incs = df_asset_navs.pct_change().dropna()
    # corr = df_asset_incs.corr()
    corr = df_asset_navs.corr()

    return corr
Пример #3
0
def fund_update_monetary_pool(pool, adjust_points, optlimit, optcalc):
    ''' re calc fund for single fund pool
    '''
    lookback = pool.ra_lookback
    limit = optlimit

    if optcalc:
        #
        # 计算每个调仓点的最新配置
        #
        data = []

        with click.progressbar(length=len(adjust_points), label='calc pool %s' % (pool.id)) as bar:
            for day in adjust_points:
                bar.update(1)
                mnf = MonetaryFundFilter()
                mnf.handle()
                asset_ids = MonetaryAllocate.all_monetary_fund_globalid()
                trade_dates = ATradeDate.week_trade_date()
                dict_nav = {}
                for asset_id in asset_ids:
                    dict_nav[asset_id] = Asset.load_nav_series(asset_id, reindex=trade_dates)
                df_nav = pd.DataFrame(dict_nav).fillna(method='pad')
                df_inc = df_nav.pct_change().fillna(0.0)

                codes = pool_by_scale_return(pool, day, lookback, limit, mnf, df_inc)

                print(day, len(codes), codes)
                if codes is None or len(codes) == 0:
                    continue
                ra_fund = base_ra_fund.load(globalids=codes)
                ra_fund = ra_fund.set_index(['ra_code'])
                ra_pool = pool['id']
                for code in ra_fund.index:
                    ra_fund_id = ra_fund.loc[code, 'globalid']
                    data.append([ra_pool, day, ra_fund_id, code])

        fund_df = pd.DataFrame(data, columns = ['ra_pool', 'ra_date', 'ra_fund_id', 'ra_fund_code'])
        fund_df = fund_df.set_index(['ra_pool', 'ra_date', 'ra_fund_id'])

        df_new = fund_df
        columns = [literal_column(c) for c in (df_new.index.names + list(df_new.columns))]
        s = select(columns)
        db = database.connection('asset')
        ra_pool_fund_t = Table('ra_pool_fund', MetaData(bind=db), autoload=True)
        s = s.where(ra_pool_fund_t.c.ra_pool.in_(df_new.index.get_level_values(0).tolist()))
        df_old = pd.read_sql(s, db, index_col = df_new.index.names)
        database.batch(db, ra_pool_fund_t, df_new, df_old)
def fc_update_nav(ctx, optid):

    lookback_days = 365
    blacklist = [24, 32, 40]
    factor_ids = [
        '1200000%02d' % i for i in range(1, 40) if i not in blacklist
    ]
    trade_dates = ATradeDate.month_trade_date(begin_date='2018-01-01')
    date = trade_dates[-1]

    start_date = (date -
                  datetime.timedelta(lookback_days)).strftime('%Y-%m-%d')
    end_date = date.strftime('%Y-%m-%d')
    corr0 = load_ind(factor_ids, start_date, end_date)
    res = clusterKMeansBase(corr0, maxNumClusters=10, n_init=100)
    asset_cluster = res[1]
    asset_cluster = dict(
        zip(sorted(asset_cluster), sorted(asset_cluster.values())))

    factor_name = base_ra_index.load()
    for k, v in asset_cluster.iteritems():
        v = np.array(v).astype('int')
        print factor_name.loc[v]

    assets = {}
    for factor_id in factor_ids:
        assets[factor_id] = Asset.load_nav_series(factor_id)
    df_assets = pd.DataFrame(assets)

    db = database.connection('asset')
    metadata = MetaData(bind=db)
    t = Table('ra_composite_asset_nav', metadata, autoload=True)

    for layer in asset_cluster.keys():
        layer_id = 'FC.000001.%d' % (layer + 1)
        layer_assets = asset_cluster[layer]
        layer_nav = df_assets.loc[:, layer_assets]
        layer_ret = layer_nav.pct_change().dropna()
        layer_ret = layer_ret.mean(1)
        layer_ret = layer_ret.reset_index()
        layer_ret.columns = ['ra_date', 'ra_inc']
        layer_ret['ra_nav'] = (1 + layer_ret['ra_inc']).cumprod()
        layer_ret['ra_asset_id'] = layer_id
        df_new = layer_ret.set_index(['ra_asset_id', 'ra_date'])
        df_old = asset_ra_composite_asset_nav.load_nav(layer_id)
        df_new = df_new.reindex(columns=['ra_nav', 'ra_inc'])
        database.batch(db, t, df_new, df_old, timestamp=False)
def load_mv(factor_ids, start_date, end_date):

    trade_dates = ATradeDate.trade_date(start_date, end_date)
    asset_navs = {}
    for factor_id in factor_ids:
        asset_navs[factor_id] = Asset.load_nav_series(factor_id,
                                                      reindex=trade_dates)

    df_asset_navs = pd.DataFrame(asset_navs)
    df_asset_incs = df_asset_navs.pct_change().dropna()
    df_mv = df_asset_incs.mean() / df_asset_incs.std()
    df_mv = df_mv.to_frame('mv')
    mv_dist = distance_matrix(df_mv, df_mv)
    df_dist = pd.DataFrame(data=mv_dist,
                           columns=df_asset_navs.columns,
                           index=df_asset_navs.columns)

    return df_dist
Пример #6
0
    def cal_btsg(self, stock_id):

        stock_quote = StockAsset.get_stock(stock_id).quote
        close = stock_quote.tcloseaf
        close = close.replace(0.0, method='pad')
        ret = close.pct_change()

        sz = Asset.load_nav_series('120000016')
        bret = sz.pct_change()

        ret = ret.resample('m').sum().iloc[:-1]
        bret = bret.resample('m').sum().iloc[:-1]
        common_index = ret.index.intersection(bret.index)
        ret = ret.loc[common_index]
        bret = bret.loc[common_index]

        ser = pd.Series()

        if len(common_index) < 60:
            return ser

        for i in range(60, len(common_index)):

            tmp_dates = common_index[:i + 1]
            y = ret.loc[tmp_dates].values
            x = bret.loc[tmp_dates].values.reshape(-1, 1)
            x = sm.add_constant(x)
            mod = sm.OLS(y, x).fit()
            beta = mod.params[1]
            sigma = mod.resid.std()
            btsg = pow(beta * sigma, 0.5)

            ser.loc[tmp_dates[-1]] = btsg

        today = get_today()
        ser.loc[today] = np.nan
        ser = ser.resample('d').last().fillna(method='pad')

        return ser
Пример #7
0
def nav_update(alloc, enddate):
    alloc_id = alloc['globalid']
    # 加载仓位信息
    df_pos = asset_mz_highlow_pos.load(alloc_id)

    # 加载资产收益率
    min_date = df_pos.index.min().date()
    #max_date = df_pos.index.max()
    if enddate is not None:
        max_date = enddate.date()
    else:
        max_date = (datetime.now() - timedelta(days=1)) # yesterday


    # data = {}
    # for asset_id in df_pos.columns:
    #     data[asset_id] = load_nav_series(asset_id, begin_date=min_date, end_date=max_date)
    # df_nav = pd.DataFrame(data).fillna(method='pad')
    # df_inc  = df_nav.pct_change().fillna(0.0)


    data = {}
    for asset_id in df_pos.columns:
        data[asset_id] = Asset.load_nav_series(asset_id, begin_date=min_date, end_date=max_date)
    df_nav = pd.DataFrame(data).fillna(method='pad')
    df_inc  = df_nav.pct_change().fillna(0.0)


    # 计算复合资产净值
    df_nav_portfolio = DFUtil.portfolio_nav(df_inc, df_pos, result_col='portfolio')

    df_result = df_nav_portfolio[['portfolio']].rename(columns={'portfolio':'mz_nav'}).copy()
    df_result.index.name = 'mz_date'
    df_result['mz_inc'] = df_result['mz_nav'].pct_change().fillna(0.0)
    df_result['mz_highlow_id'] = alloc['globalid']
    df_result = df_result.reset_index().set_index(['mz_highlow_id', 'mz_date'])

    asset_mz_highlow_nav.save(alloc_id, df_result)
def load_ret(factor_ids, start_date, end_date):

    trade_dates = ATradeDate.trade_date(start_date, end_date)
    asset_navs = {}
    for factor_id in factor_ids:
        asset_navs[factor_id] = Asset.load_nav_series(factor_id,
                                                      reindex=trade_dates)

    df_asset_navs = pd.DataFrame(asset_navs)
    df_asset_incs = df_asset_navs.pct_change().dropna()
    df_std = df_asset_incs.mean()
    values = np.zeros((len(df_std), len(df_std)))
    for i in range(len(df_std)):
        for j in range(len(df_std)):
            tmp_value = df_std.iloc[i] / df_std.iloc[j]
            if tmp_value > 1:
                tmp_value = 1 / tmp_value
            values[i, j] = tmp_value

    df_dist = pd.DataFrame(data=values,
                           columns=df_asset_navs.columns,
                           index=df_asset_navs.columns)

    return df_dist
Пример #9
0
def fc_rolling(ctx, optid):

    engine = database.connection('asset')
    Session = sessionmaker(bind=engine)
    session = Session()

    blacklist = [24, 40]
    asset_ids = ['1200000%02d' % i for i in range(1, 40) if i not in blacklist]
    assets = {}
    for asset_id in asset_ids:
        # assets[asset_id] = load_nav_series(asset_id)
        assets[asset_id] = Asset.load_nav_series(asset_id)

    layer_result = {}
    layer_result['date'] = []
    layer_result['layer'] = []
    layer_result['factor'] = []

    lookback_days = 365
    forecast_days = 90

    df_result = pd.DataFrame(columns=['date', 'factor_id', 'layer'])
    start_date = '2017-01-01'
    trade_dates = ATradeDate.month_trade_date(begin_date=start_date)
    for date in trade_dates:
        print date
        sdate = (date - datetime.timedelta(lookback_days)).strftime('%Y-%m-%d')
        edate = date.strftime('%Y-%m-%d')
        fdate = (date + datetime.timedelta(forecast_days)).strftime('%Y-%m-%d')
        '''
        init_num = 5
        fc = FactorCluster(assets, init_num, sdate, edate, fdate)
        fc.handle()
        while fc.inner_score < 0.88:
            init_num += 1
            fc = FactorCluster(assets, init_num, sdate, edate, fdate)
            fc.handle()
        '''

        method = 'beta'
        scores = {}
        models = {}
        for i in range(7, 12):
            fc = FactorCluster(assets,
                               i,
                               sdate,
                               edate,
                               fdate,
                               method=method,
                               bf_ids=None)
            fc.handle()
            print i, 'silhouette_samples_value:', fc.silhouette_samples_value
            score = fc.silhouette_samples_value
            scores[score] = i
            models[score] = fc

        best_score = np.max(scores.keys())
        best_model = models[best_score]
        fc = best_model

        print 'best cluster num:', fc.n_clusters
        factor_name = base_ra_index.load()
        for k, v in fc.asset_cluster.iteritems():

            v = np.array(v).astype('int')
            print factor_name.loc[v]
            for vv in v:
                df_result.loc[len(df_result)] = [date, vv, k]

        print

    session.commit()
    session.close()