Пример #1
0
	def choose_mate(self, mates ):
		"""
		Choose a mate at "Random" based on a list of potential mates.
		The choice depends in the individuals desired_assortment (A).
		With probability A they choose a mate of the same phenotype as
		themselves, and with probability 1 - A they choose a random mate.

		Returns
		=======
		A tuple, the first value being the integer index of the mate choosen
		and the second value being the mate itself.

		"""

		##A list of phenotypic values, together with the index of the individual
		all_mates = list( enumerate(mates) )

		if random.random() < self.desired_assortment:
			##Then we choose a mate who is clonally related
			potential_mates = [ p for p in all_mates if p[1].phenotypic_value == self.phenotypic_value ]
			##In the special case where there are no identical mates to choose from we'll just choose
			##at random.
			if len(potential_mates) == 0:
				potential_mates = all_mates
		else:
			##Choose a mate at random
			potential_mates = all_mates

		return random_choice( potential_mates )
Пример #2
0
	def make_gamete(self, delta, mu_strat = 0.05, mu_assort = 0.1):
		"""
		Returns a gamete, i.e. a gene a and a gene m.
		Which genes are chossen depends firstly on whether
		crossover takes place, and also on whether the individual
		contains any meiotic distorter alleles.
		Needs also mu_strat and mu_assort. See Individual.mutate_gamete.
		"""
		##Choose whether to crossover or not
		if random.random() < self.crossover:
			do_crossover = True
			##We can already select the value of gamete a if we know
			##Crossover will take place...
			gamete_a = random_choice( [self.a1, self.a2] )
		else:
			do_crossover = False

		##The probability of selecting m1 given gentic values of m1 and m2
		p_select_m1 = 0.5*( 1 + ( 1 - self.m1 )*delta - (1 - self.m2 )*delta )
		if random.random() < p_select_m1:
			gamete_m = self.m1
			if not do_crossover:
				gamete_a = self.a1
		else:
			gamete_m = self.m2
			if not do_crossover:
				gamete_a = self.a2

		gamete = gamete_a, gamete_m
		return self.mutate_gamete( gamete, mu_strat, mu_assort )
Пример #3
0
	def new_generation(self, fitness_matrix, delta, mu_strat = 0.05, mu_assort = 0.1 ):
		"""
		Creates and returns a new population which is the outcome of one generation of selection.
		"""
		if self.pairs is None:
			self.pair_population()
		fitnesses = [ p.fitness( fitness_matrix ) for p in self.pairs ]
		parents = random_choice( self.pairs, p = fitnesses, size = self.total_individuals )
		children = [ p.make_child(delta, mu_strat = mu_strat, mu_assort = mu_assort) for p in parents ]
		return Population( children )