Пример #1
0
	def findvdisp4(self,r,v,r200,maxv):
		"shifting gapper method"
		k = False
		b = 6
		while k == False:
			b -= 1
			(n,bins) = np.histogram(r,bins=b)
			k = np.all([n>15])
		print 'bin sizes', n
		d = np.digitize(r,bins[:-1])
		v_final = np.array([])
		r_final = np.array([])
		for i in range(n.size):
			velocities_p = np.sort(v[np.where((d==i+1) & (v>0))])
			radius_p = (r[np.where((d==i+1) & (v>0))])[np.argsort(v[np.where((d==i+1) & (v>0))])]
			velocities_n = np.sort(v[np.where((d==i+1) & (v<0))])[::-1]
			radius_n = (r[np.where((d==i+1) & (v<0))])[np.argsort(v[np.where((d==i+1) & (v<0))])[::-1]]
			dv_p = velocities_p[1:] - velocities_p[:-1]
			dv_n = velocities_n[:-1] - velocities_n[1:]
			for j in range(dv_p.size):
				if dv_p[j] >= 1000.0:
					v_final = np.append(v_final,velocities_p[:j+1])
					r_final = np.append(r_final,radius_p[:j+1])
					break
			for j in range(dv_n.size):
				if dv_n[j] >= 1000.0:
					v_final = np.append(v_final,velocities_n[:j+1])
					r_final = np.append(r_final,radius_n[:j+1])
					break
		try:
			vvar = (astStats.biweightScale(v,9.0))**2
		except:
			vvar = np.var(v)
		return vvar
Пример #2
0
        def betaprofile(self,x,y,z,vx,vy,vz,halox,haloy,haloz,halovx,halovy,halovz,radii,rlimit):
            #go to cluster reference frame
            x = x-halox
            y = y-haloy
            z = z-haloz
            #correct for cluster proper motion
            vx = vx-halovx
            vy = vy-halovy
            vz = vz-halovz

            thetavec = np.arccos(z/np.sqrt(x**2.0+y**2.0+z**2.0))
            phivec = np.arctan(y/x)
            vrad = vx*np.sin(thetavec)*np.cos(phivec)+vy*np.sin(thetavec)*np.sin(phivec)+vz*np.cos(thetavec)
            vtheta = vx*np.cos(thetavec)*np.cos(phivec)+vy*np.cos(thetavec)*np.sin(phivec)-vz*np.sin(thetavec)
            vphi = -vx*np.sin(phivec)+vy*np.cos(phivec)
            rvec = np.sqrt(x**2.0+y**2.0+z**2.0)
            self.beta = np.zeros(radii.size)
            self.beta -= 999.0
            for i in range(radii.size-1):
                i += 1
                w = np.where((rvec>radii[i-1]) & (rvec<=radii[i]))
                if w[0].size >= 20:
                    self.beta[i] = 1.0 - (astStats.biweightScale(vtheta[w],9.0)**2.0 + astStats.biweightScale(vphi[w],9.0)**2.0)/(2.0*astStats.biweightScale(vrad[w],9.0)**2.0)
            #fit = np.polyfit(radii[np.where((self.beta>-5))],self.beta[np.where((self.beta>-5))],6)
            #self.yfit = fit[0]*radii**6.0 + fit[1]*radii**5.0 + fit[2]*radii**4.0 + fit[3]*radii**3.0 + fit[4]*radii**2.0 + fit[5]*radii + fit[6]
            return self.beta
Пример #3
0
 def findvdisp(self,r,v,r200,maxv):
     """
     Use astLib.astStats biweight sigma clipping Scale estimator for the velocity dispersion
     """
     v_cut = v[np.where((r<r200) & (np.abs(v)<maxv))]
     try:
         self.gal_vdisp = astStats.biweightScale(v_cut,9.0)
     except:
         self.gal_vdisp = np.std(v_cut,ddof=1)
Пример #4
0
 def findvdisp(self, r, v, r200, maxv):
     """
     Use astLib.astStats biweight sigma clipping Scale estimator for the velocity dispersion
     """
     v_cut = v[np.where((r < r200) & (np.abs(v) < maxv))]
     try:
         self.gal_vdisp = astStats.biweightScale(v_cut, 9.0)
     except:
         self.gal_vdisp = np.std(v_cut, ddof=1)
Пример #5
0
	def membervdisp(self,r,v,vi,ri,r200):
		"This function is for the ideal scenario that you know which galaxies are members"
		#print 'standard dev of zone= ',np.std(v[np.where((r<r200))])# & (v>-2000) & (v < 2000))])
		#return np.var(v)
		#return np.var(v[np.where((r<r200) & (v>-2000) & (v < 2000))])
		try:
			vvar = (astStats.biweightScale(v,9.0))**2.0
		except:
			vvar = np.var(v)
		return vvar
Пример #6
0
	def findvdisp(self,r,v,vi,ri,r200,maxv):
            #print 'average r', np.average(r)
            avgr = r200
            #dispvals = v[np.where((r>np.average(r)-.4) & (r<np.average(r)+.4) & (v<2000) & (v>-2000))]
            for i in range(6):
                v2 = v[np.where((r<avgr) & (v<maxv) & (v>-maxv))]
                r2 = r[np.where((r<avgr) & (v<maxv) & (v>-maxv))]
                stv = 3.5 * np.std(v2)
                print '3.5 sigma of v = ', stv
                v = v2[np.where((v2 > -stv) & (v2 < stv))]
                r = r2[np.where((v2 > -stv) & (v2 < stv))]
            if v.size > 15.0:
                vstd = astStats.biweightScale(v,9.0)
                vvar = (astStats.biweightScale(v,9.0))**2
            else:
                vstd = np.std(v)
                vvar = np.var(v)
            #print 'standard dev of zone= ',vstd
            return (np.sqrt(vvar))**2
Пример #7
0
    def __init__(self,data,ri,vi,Zi,memberflags=None,r200=2.0,maxv=5000.0,halo_scale_radius=None,halo_scale_radius_e=0.01,halo_vdisp=None,bin=None,plotphase=True,beta=None):
        kappaguess = np.max(Zi) #first guess at the level
        self.levels = np.linspace(0.00001,kappaguess,100)[::-1] #create levels (kappas) to try out
        fitting_radii = np.where((ri>=r200/3.0) & (ri<=r200)) #when fitting an NFW (later), this defines the r range to fit within

        self.r200 = r200

        if halo_scale_radius is None:
            self.halo_scale_radius = self.r200/5.0
        else:
            self.halo_scale_radius = halo_scale_radius
            self.halo_scale_radius_e = halo_scale_radius_e

        if beta is None:
            self.beta = 0.2+np.zeros(ri.size)
        else: self.beta = beta
        self.gb = (3-2.0*self.beta)/(1-self.beta)
        
        #Calculate velocity dispersion with either members, fed value, or estimate using 3.5sigma clipping
        if memberflags is not None:
            vvarcal = data[:,1][np.where(memberflags==1)]
            try:
                self.gal_vdisp = astStats.biweightScale(vvarcal[np.where(np.isfinite(vvarcal))],9.0)
                print 'O ya! membership calculation!'
            except:
                self.gal_vdisp = np.std(vvarcal,ddof=1)
            self.vvar = self.gal_vdisp**2
        elif halo_vdisp is not None:
            self.gal_vdisp = halo_vdisp
            self.vvar = self.gal_vdisp**2
        else:
            #Variable self.gal_vdisp
            try:
                self.findvdisp(data[:,0],data[:,1],r200,maxv)
            except:
                self.gal_vdisp = np.std(data[:,1][np.where((data[:,0]<r200) & (np.abs(data[:,1])<maxv))],ddof=1)
            self.vvar = self.gal_vdisp**2
        
        #initilize arrays
        self.vesc = np.zeros(self.levels.size)
        Ar_final_opt = np.zeros((self.levels.size,ri[np.where((ri<r200) & (ri>=0))].size))
        
        #find the escape velocity for all level (kappa) guesses
        for i in range(self.vesc.size):
            self.vesc[i],Ar_final_opt[i] = self.findvesc(self.levels[i],ri,vi,Zi,r200)
        
        #difference equation to search for minimum value
        self.skr = (self.vesc-4.0*self.vvar)**2
        
        try:
            self.level_elem = np.where(self.skr == np.min(self.skr[np.isfinite(self.skr)]))[0][0]
            self.level_final = self.levels[self.level_elem]
            self.Ar_finalD = np.zeros(ri.size)
            for k in range(self.Ar_finalD.size):
                self.Ar_finalD[k] = self.findAofr(self.level_final,Zi[k],vi)
                if k != 0:
                    self.Ar_finalD[k] = self.restrict_gradient2(np.abs(self.Ar_finalD[k-1]),np.abs(self.Ar_finalD[k]),ri[k-1],ri[k])
        
        #This exception occurs if self.skr is entirely NAN. A flag should be raised for this in the output table
        except ValueError:
            self.Ar_finalD = np.zeros(ri.size)
        
        #fit an NFW to the resulting caustic profile.
        self.NFWfit(ri[fitting_radii],self.Ar_finalD[fitting_radii]*np.sqrt(self.gb[fitting_radii]),self.halo_scale_radius,ri,self.gb)
        #self.NFWfit(ri[fitting_radii],self.Ar_finalD[fitting_radii],self.halo_scale_radius,ri,self.gb)

        if plotphase == True:
            s =figure()
            ax = s.add_subplot(111)
            ax.plot(data[:,0],data[:,1],'k.')
            for t in range(Ar_final_opt.shape[0]):
                ax.plot(ri[:Ar_final_opt[t].size],Ar_final_opt[t],c='0.4',alpha=0.5)
                ax.plot(ri[:Ar_final_opt[t].size],-Ar_final_opt[t],c='0.4',alpha=0.5)
            ax.plot(ri,self.Ar_finalD,c='blue')
            ax.plot(ri,-self.Ar_finalD,c='blue')
            ax.set_ylim(-3500,3500)
            s.savefig('/nfs/christoq_ls/giffordw/plotphase.png')
            close()

        ##Output galaxy membership
        kpc2km = 3.09e16
        try:
            fitfunc = lambda x,a,b: np.sqrt(2*4*np.pi*6.67e-20*a*(b*kpc2km)**2*np.log(1+x/b)/(x/b))
            popt,pcov = curve_fit(fitfunc,ri,self.Ar_finalD)
            self.Arfit = fitfunc(ri,popt[0],popt[1])
        except:
            fitfunc = lambda x,a: np.sqrt(2*4*np.pi*6.67e-20*a*(30.0*kpc2km)**2*np.log(1+x/30.0)/(x/30.0))
            popt,pcov = curve_fit(fitfunc,ri,self.Ar_finalD)
            self.Arfit = fitfunc(ri,popt[0])
        self.memflag = np.zeros(data.shape[0])
        #fcomp = interp1d(ri,self.Ar_finalD)
        print ri.size, self.vesc_fit.size
        fcomp = interp1d(ri,self.vesc_fit)
        for k in range(self.memflag.size):
            vcompare = fcomp(data[k,0])
            if np.abs(vcompare) >= np.abs(data[k,1]):
                self.memflag[k] = 1
Пример #8
0
	def bin_stack_clusters(self,HaloID,HaloData,BinData,Halo_P,Halo_V,Gal_P,Gal_V,G_Mags,R_Mags,I_Mags,k,j):
		''' Building Ensemble Cluster and Calculating Property Statistics '''
		## Unpack HaloData array 
		M_crit200,R_crit200,Z,SRAD,ESRAD,HVD = HaloData
		BIN_M200,BIN_R200,BIN_HVD = BinData

		## Define Arrays for Building Ensemble and LOS
		# Ensemble Arrays:	[Successive Ensemble Number][Data]
		# Line of Sight Arrays:	[Line Of Sight][Data]
		ens_r,ens_v,ens_gmags,ens_rmags,ens_imags,ens_hvd = [],[],[],[],[],[]
		ens_caumass, ens_caumass_est, ens_causurf, ens_nfwsurf = [], [], [], []
		los_r,los_v,los_gmags,los_rmags,los_imags,los_hvd = [],[],[],[],[],[]
		los_caumass, los_caumass_est, los_causurf, los_nfwsurf = [], [], [], []
		sample_size,pro_pos = [],[]
		ens_gal_id,los_gal_id = [],[]
		ens_clus_id = []
		gal_id_count = 0

		## Loop over lines of sight (different clusters)
		for [l,s] in zip(np.arange(self.line_num*j,self.line_num*(j+1)),self.stack_range[j*self.line_num:(j+1)*self.line_num]):

			# Define index for to-be-stacked halo as cluster index (k) + line of sight index (l)

			if self.light_cone == True:
				# Configure RA, DEC and Z into cluster-centric radius and velocity
				pass
			else:
				# Line of Sight Calculation for naturally 3D data
				r, v, projected_pos = self.U.line_of_sight(Gal_P[l],Gal_V[l],Halo_P[s],Halo_V[s],s)

			# Create Ensemble and LOS Galaxy ID Array for 3D extraction later on
			en_gal_id = np.arange( gal_id_count, len(r)+gal_id_count )
			gal_id_count += len(r)
			ln_gal_id = np.arange(len(r))
			en_clus_id = np.array([HaloID[s]]*len(r),int)

			# Limit Data in Phase Space
			r,v,en_gal_id,en_clus_id,ln_gal_id,gmags,rmags,imags,samp_size = self.U.limit_gals(r,v,en_gal_id,en_clus_id,ln_gal_id,G_Mags[l],R_Mags[l],I_Mags[l],R_crit200[s],HVD[s])

			# Build LOS and Ensemble, with given method of stacking
			en_r,en_v,en_gal_id,en_clus_id,en_gmags,en_rmags,en_imags,ln_r,ln_v,ln_gal_id,ln_gmags,ln_rmags,ln_imags = self.S.build_ensemble(r,v,en_gal_id,en_clus_id,ln_gal_id,gmags,rmags,imags,HaloData.T[s],l)	

			# If Scale data before stack is desired
			if self.scale_data == True:
				en_r = self.U.scale_gals(en_r,R_crit200[s])				
	
			# Build Ensemble Arrays
			ens_r.extend(en_r)
			ens_v.extend(en_v)
			ens_gmags.extend(en_gmags)
			ens_rmags.extend(en_rmags)
			ens_imags.extend(en_imags)
			ens_gal_id.extend(np.array(en_gal_id,int))
			ens_clus_id.extend(np.array(en_clus_id,int))
	
			# Calculate LOS HVD (this is after shiftgapper) if run_los == True
			if self.run_los == True:
				# Pick out gals within r200
				ln_within = np.where(ln_r<R_crit200[s])[0]
				gal_count = len(ln_within)
				if gal_count <= 3:
					'''biweightScale can't take less than 4 elements'''
					# Calculate hvd with numpy std of galaxies within r200 (b/c this is quoted richness)
					ln_hvd = np.std(np.copy(ln_v)[ln_within])
				else:
					# Calculate hvd with astStats biweightScale (see Beers 1990)
					try:
						ln_hvd = astStats.biweightScale(np.copy(ln_v)[ln_within],9.0)
					# Sometimes divide by zero error in biweight function for low gal_num
					except ZeroDivisionError:
						print 'ZeroDivisionError in biweightfunction, line 140 in caustic_class_stack2D'
						print 'ln_v[ln_within]=',ln_v[ln_within]
						ln_hvd = np.std(np.copy(ln_v)[ln_within])
			else:
				ln_hvd = []

			# Run Caustic Technique for LOS mass estimation if run_los == True
			if self.run_los == True:
				ln_caumass,ln_caumass_est,ln_causurf,ln_nfwsurf = self.S.kernel_caustic_masscalc(ln_r,ln_v,HaloData.T[s],BinData.T[k],ln_hvd,k,l)
				print 'j = '+str(j)+', k = '+str(k)+', l = '+str(l)+', s = '+str(s)
			else:
				ln_caumass,ln_caumass_est,ln_causurf,ln_nfwsurf = [],[],[],[]
		
	
			# Append LOS Data Arrays
			los_r.append(ln_r)
			los_v.append(ln_v)
			los_gal_id.append(np.array(ln_gal_id,int))
			los_gmags.append(ln_gmags)
			los_rmags.append(ln_rmags)
			los_imags.append(ln_imags)
			los_hvd.append(ln_hvd)
			los_caumass.append(ln_caumass)
			los_caumass_est.append(ln_caumass_est)
			los_causurf.append(ln_causurf)
			los_nfwsurf.append(ln_nfwsurf)
			sample_size.append(samp_size)
			pro_pos.append(projected_pos)

		# If scale data == True, re-scale by ensemble r200
		if self.scale_data == True:
			ens_r = np.array(ens_r)*BIN_R200[k]

		# Shiftgapper for Ensemble Interloper treatment
		ens_r,ens_v,ens_gal_id,ens_clus_id,ens_gmags,ens_rmags,ens_imags = self.C.shiftgapper(np.vstack([ens_r,ens_v,ens_gal_id,ens_clus_id,ens_gmags,ens_rmags,ens_imags]).T).T

		# Sort by R_Mag
		sort = np.argsort(ens_rmags)
		ens_r,ens_v,ens_gal_id,ens_clus_id,ens_gmags,ens_rmags,ens_imags = ens_r[sort],ens_v[sort],ens_gal_id[sort],ens_clus_id[sort],ens_gmags[sort],ens_rmags[sort],ens_imags[sort]

		# Reduce system to gal_num richness within r200
		within = np.where(ens_r <= BIN_R200[k])[0]
		end = within[:self.gal_num*self.line_num + 1][-1]
		ens_r = ens_r[:end]
		ens_v = ens_v[:end]
		ens_gal_id = ens_gal_id[:end]
		ens_clus_id = ens_clus_id[:end]
		ens_gmags = ens_gmags[:end]
		ens_rmags = ens_rmags[:end]
		ens_imags = ens_imags[:end]

		# Calculate HVD
		en_hvd = astStats.biweightScale(np.copy(ens_v)[np.where(ens_r<=BIN_R200[k])],9.0)

		# Run Caustic Technique!
		en_caumass,en_caumass_est,en_causurf,en_nfwsurf = self.S.kernel_caustic_masscalc(ens_r,ens_v,HaloData.T[k],BinData.T[k],en_hvd,k)

		# Append Ensemble Data Arrays
		ens_hvd.append(en_hvd)
		ens_caumass.append(en_caumass)
		ens_caumass_est.append(en_caumass_est)

		# Turn into numpy arrays
		ens_r,ens_v,ens_gmags,ens_rmags,ens_imags = np.array(ens_r),np.array(ens_v),np.array(ens_gmags),np.array(ens_rmags),np.array(ens_imags)
		ens_hvd,ens_caumass,ens_caumass_est = np.array(ens_hvd),np.array(ens_caumass),np.array(ens_caumass_est)
		ens_causurf,ens_nfwsurf = np.array(en_causurf),np.array(en_nfwsurf)
		los_r,los_v,los_gmags,los_rmags,los_imags = np.array(los_r),np.array(los_v),np.array(los_gmags),np.array(los_rmags),np.array(los_imags)
		los_hvd,los_caumass,los_caumass_est = np.array(los_hvd),np.array(los_caumass),np.array(los_caumass_est)
		los_causurf,los_nfwsurf = np.array(los_causurf),np.array(los_nfwsurf)
		sample_size,pro_pos = np.array(sample_size),np.array(pro_pos)
		ens_gal_id = np.array(ens_gal_id,int)
		los_gal_id = np.array(los_gal_id)
		ens_clus_id = np.array(ens_clus_id,int)

		return ens_r,ens_v,ens_gal_id,ens_clus_id,ens_gmags,ens_rmags,ens_imags,ens_hvd,ens_caumass,ens_caumass_est,ens_causurf,ens_nfwsurf,los_r,los_v,los_gal_id,los_gmags,los_rmags,los_imags,los_hvd,los_caumass,los_caumass_est,los_causurf,los_nfwsurf,self.C.x_range,sample_size,pro_pos	
Пример #9
0
    def run_caustic(self,
                    data,
                    gal_mags=None,
                    gal_memberflag=None,
                    clus_ra=None,
                    clus_dec=None,
                    clus_z=None,
                    gal_r=None,
                    gal_v=None,
                    r200=None,
                    clus_vdisp=None,
                    rlimit=4.0,
                    vlimit=3500,
                    q=10.0,
                    H0=100.0,
                    xmax=6.0,
                    ymax=5000.0,
                    cut_sample=True,
                    gapper=True,
                    mirror=True,
                    absflag=False):
        self.clus_ra = clus_ra
        self.clus_dec = clus_dec
        self.clus_z = clus_z
        if gal_r == None:
            if self.clus_ra == None:
                #calculate average ra from galaxies
                self.clus_ra = np.average(data[:, 0])
            if self.clus_dec == None:
                #calculate average dec from galaxies
                self.clus_dec = np.average(data[:, 1])

            #Reduce data set to only valid redshifts
            data_spec = data[np.where((np.isfinite(data[:, 2]))
                                      & (data[:, 2] > 0.0)
                                      & (data[:, 2] < 5.0))]

            if self.clus_z == None:
                #calculate average z from galaxies
                self.clus_z = np.average(data_spec[:, 2])

            #calculate angular diameter distance.
            #Variable self.ang_d
            self.ang_d, self.lum_d = self.zdistance(self.clus_z, H0)

            #calculate the spherical angles of galaxies from cluster center.
            #Variable self.angle
            self.angle = self.findangle(data_spec[:, 0], data_spec[:, 1],
                                        self.clus_ra, self.clus_dec)

            self.r = self.angle * self.ang_d
            self.v = c * (data_spec[:, 2] - self.clus_z) / (1 + self.clus_z)
        else:
            data_spec = data[np.where(np.isfinite(gal_v))]
            self.r = gal_r
            self.v = gal_v

        #package galaxy data, USE ASTROPY TABLE HERE!!!!!
        if gal_memberflag is None:
            self.data_table = np.vstack((self.r, self.v, data_spec.T)).T
        else:
            self.data_table = np.vstack(
                (self.r, self.v, data_spec.T, gal_memberflag)).T

        #reduce sample within limits
        if cut_sample == True:
            self.data_set = self.set_sample(self.data_table,
                                            rlimit=rlimit,
                                            vlimit=vlimit)
        else:
            self.data_set = self.data_table

        #further select sample via shifting gapper
        if gapper == True:
            self.data_set = self.shiftgapper(self.data_set)
        print 'DATA SET SIZE', self.data_set[:, 0].size
        '''
        #tries to identify double groups that slip through the gapper process
        upper_max = np.max(self.data_set[:,1][np.where((self.data_set[:,1]>0.0)&(self.data_set[:,0]<1.0))])
        lower_max = np.min(self.data_set[:,1][np.where((self.data_set[:,1]<0.0)&(self.data_set[:,0]<1.0))])
        if np.max(np.array([upper_max,-lower_max])) > 1000.0+np.min(np.array([upper_max,-lower_max])):
            self.data_set = self.data_set[np.where(np.abs(self.data_set[:,1])<1000.0+np.min(np.array([upper_max,-lower_max])))]
        '''
        if absflag:
            abs_mag = self.data_table[:, 5]
        else:
            abs_mag = self.data_table[:, 7] - magnitudes.distance_modulus(
                self.clus_z, **fidcosmo)
        self.Ngal_1mpc = self.r[np.where((abs_mag < -20.55) & (self.r < 1.0)
                                         & (np.abs(self.v) < 3500))].size
        if r200 == None:
            self.r200 = 0.01 * self.Ngal_1mpc + 0.584  #+np.random.normal(0,0.099)
            #vdisp_prelim = astStats.biweightScale(self.data_set[:,1][np.where(self.data_set[:,0]<3.0)],9.0)
            #r200_mean_prelim = 0.002*vdisp_prelim + 0.40
            #self.r200 = r200_mean_prelim/1.7
            '''
            #original r200 est
            rclip,vclip = self.shiftgapper(np.vstack((self.r[np.where((self.r<3.0) & (np.abs(self.v)<3500.0))],self.v[np.where((self.r<3.0) & (np.abs(self.v)<3500.0))])).T).T
            vdisp_prelim_1 = astStats.biweightClipped(vclip,9.0,3.0)['biweightScale']
            rclip,vclip = self.shiftgapper(np.vstack((self.r[np.where((self.r<1.5) & (np.abs(self.v)<3500.0))],self.v[np.where((self.r<1.5) & (np.abs(self.v)<3500.0))])).T).T
            vdisp_prelim_2 = astStats.biweightClipped(vclip,9.0,3.0)['biweightScale']
            if vdisp_prelim_2 < 0.6*vdisp_prelim_1: vdisp_prelim = vdisp_prelim_2
            else: vdisp_prelim = vdisp_prelim_1
            r200_mean_prelim = 0.002*vdisp_prelim + 0.40
            self.r200 = r200_mean_prelim/1.7
            '''
            if self.r200 > 3.0:
                self.r200 = 3.0
            if 3.0 * self.r200 < 6.0:
                rlimit = 3.0 * self.r200
            else:
                rlimit = 5.5

        else:
            self.r200 = r200
        print 'Pre_r200=', self.r200

        if mirror == True:
            print 'Calculating Density w/Mirrored Data'
            self.gaussian_kernel(np.append(self.data_set[:, 0],
                                           self.data_set[:, 0]),
                                 np.append(self.data_set[:, 1],
                                           -self.data_set[:, 1]),
                                 self.r200,
                                 normalization=H0,
                                 scale=q,
                                 xmax=xmax,
                                 ymax=ymax,
                                 xres=200,
                                 yres=220)
        else:
            print 'Calculating Density'
            self.gaussian_kernel(self.data_set[:, 0],
                                 self.data_set[:, 1],
                                 self.r200,
                                 normalization=H0,
                                 scale=q,
                                 xmax=xmax,
                                 ymax=ymax,
                                 xres=200,
                                 yres=220)
        self.img_tot = self.img / np.max(np.abs(self.img))
        self.img_grad_tot = self.img_grad / np.max(np.abs(self.img_grad))
        self.img_inf_tot = self.img_inf / np.max(np.abs(self.img_inf))

        if clus_vdisp is None:
            self.pre_vdisp = 9.15 * self.Ngal_1mpc + 350.32
            print 'Pre_vdisp=', self.pre_vdisp
            print 'Ngal<1Mpc=', self.Ngal_1mpc
            v_cut = self.data_set[:, 1][
                np.where((self.data_set[:, 0] < self.r200)
                         & (np.abs(self.data_set[:, 1]) < 5000.0))]
            try:
                self.pre_vdisp2 = astStats.biweightScale(v_cut, 9.0)
            except:
                self.pre_vdisp2 = np.std(v_cut, ddof=1)
            print 'Vdisp from galaxies=', self.pre_vdisp2
            if self.data_set[:, 0].size < 15:
                self.v_unc = 0.35
                self.c_unc_sys = 0.75
                self.c_unc_int = 0.35
            elif self.data_set[:, 0].size < 25 and self.data_set[:,
                                                                 0].size >= 15:
                self.v_unc = 0.30
                self.c_unc_sys = 0.55
                self.c_unc_int = 0.22
            elif self.data_set[:, 0].size < 50 and self.data_set[:,
                                                                 0].size >= 25:
                self.v_unc = 0.23
                self.c_unc_sys = 0.42
                self.c_unc_int = 0.16
            elif self.data_set[:,
                               0].size < 100 and self.data_set[:,
                                                               0].size >= 50:
                self.v_unc = 0.18
                self.c_unc_sys = 0.34
                self.c_unc_int = 0.105
            else:
                self.v_unc = 0.15
                self.c_unc_sys = 0.29
                self.c_unc_int = 0.09

            if self.pre_vdisp2 > 1.75 * self.pre_vdisp:
                self.pre_vdisp_comb = 9.15 * self.Ngal_1mpc + 450.32
            else:
                self.pre_vdisp_comb = self.pre_vdisp2
            '''
            if self.data_set[:,1][np.where(self.data_set[:,0]<self.r200)].size >= 10:
                self.pre_vdisp_comb = astStats.biweightScale(self.data_set[:,1][np.where(self.data_set[:,0]<self.r200)],9.0)
            else:
                self.pre_vdisp_comb = np.std(self.data_set[:,1][np.where(self.data_set[:,0]<self.r200)],ddof=1)
                #self.pre_vdisp_comb = (self.pre_vdisp*(self.pre_vdisp2*self.v_unc)**2+self.pre_vdisp2*118.14**2)/(118.14**2+(self.pre_vdisp2*self.v_unc)**2)
            '''
        else:
            self.pre_vdisp_comb = clus_vdisp
        print 'Combined Vdisp=', self.pre_vdisp_comb

        self.beta = 0.5 * self.x_range / (self.x_range + self.r200 / 4.0)
        #Identify initial caustic surface and members within the surface
        print 'Calculating initial surface'
        if gal_memberflag is None:
            self.Caustics = CausticSurface(self.data_set,
                                           self.x_range,
                                           self.y_range,
                                           self.img_tot,
                                           r200=self.r200,
                                           halo_vdisp=self.pre_vdisp_comb,
                                           beta=None)
        else:
            self.Caustics = CausticSurface(self.data_set,
                                           self.x_range,
                                           self.y_range,
                                           self.img_tot,
                                           memberflags=self.data_set[:, -1],
                                           r200=self.r200)

        self.caustic_profile = self.Caustics.Ar_finalD
        self.caustic_fit = self.Caustics.vesc_fit
        self.gal_vdisp = self.Caustics.gal_vdisp
        self.memflag = self.Caustics.memflag

        #Estimate the mass based off the caustic profile, beta profile (if given), and concentration (if given)
        if clus_z is not None:
            #self.Mass = MassCalc(self.x_range,self.caustic_profile,self.gal_vdisp,self.clus_z,r200=self.r200,fbr=None,H0=H0)
            #self.Mass2 = MassCalc(self.x_range,self.caustic_profile,self.gal_vdisp,self.clus_z,r200=self.r200,fbr=0.65,H0=H0)
            self.Mass = MassCalc(self.x_range,
                                 self.caustic_fit,
                                 self.gal_vdisp,
                                 self.clus_z,
                                 r200=self.r200,
                                 fbr=None,
                                 H0=H0)
            self.Mass2 = MassCalc(self.x_range,
                                  self.caustic_fit,
                                  self.gal_vdisp,
                                  self.clus_z,
                                  r200=self.r200,
                                  fbr=0.65,
                                  H0=H0)

            self.r200_est = self.Mass.r200_est
            self.r200_est_fbeta = self.Mass2.r200_est
            self.M200_est = self.Mass.M200_est
            self.M200_est_fbeta = self.Mass2.M200_est

            print 'r200 estimate: ', self.Mass.r200_est
            print 'M200 estimate: ', self.Mass.M200_est

            self.Ngal = self.data_set[np.where((self.memflag == 1) & (
                self.data_set[:, 0] <= self.r200_est))].shape[0]

            #calculate velocity dispersion
        try:
            self.vdisp_gal = astStats.biweightScale(
                self.data_set[:, 1][self.memflag == 1], 9.0)
        except:
            try:
                self.vdisp_gal = np.std(self.data_set[:, 1][self.memflag == 1],
                                        ddof=1)
            except:
                self.vdisp_gal = 0.0
        '''
Пример #10
0
	def self_stack_clusters(self,ENC_R,ENC_V,ENC_MAG,ENC_VDISP,ENC_GPX3D,ENC_GPY3D,ENC_GPZ3D,ENC_GVX3D,ENC_GVY3D,ENC_GVZ3D,LINE_VDISP,Gal_P,Gal_V,Halo_P,Halo_V,M_crit200,R_crit200,SRAD,ESRAD,MAGS,k,r_limit,vlimit,gal_num,line_num,method_num,H0,q,c,LINE_DIAMASS,LINE_INFMASS,LINE_DIACAU,LINE_R,LINE_V,LINE_MAG,root,beta):
		'''Not really binning data, but organizing self halo data to mimic binned data from before'''
		#Binning arrays
		enc_r = []
		enc_v = []
		enc_mag = []
		enc_gpx3d = []
		enc_gpy3d = []
		enc_gpz3d = []
		enc_gvx3d = []
		enc_gvy3d = []
		enc_gvz3d = []

		#Line of sight arrays
		line_diamass = []
		line_infmass = []
		line_dia_cau = []
		line_inf_cau = []
		line_inf_nfw = []
		line_vdisp = []
		line_r = []
		line_v = []
		line_mag = []

		for l in range(line_num):
						
			# Line of Sight Calculation
			r,v = U.line_of_sight(Gal_P[k],Gal_V[k],Halo_P[k],Halo_V[k],H0,c)
	
			# Limit Data
			r,v,mags,gpx3d,gpy3d,gpz3d,gvx3d,gvy3d,gvz3d,en_r,en_v,en_mags,en_gpx3d,en_gpy3d,en_gpz3d,en_gvx3d,en_gvy3d,en_gvz3d = self.limit_gals(r,v,MAGS[k],R_crit200[k],Gal_P[k],Gal_V[k],r_limit,vlimit,gal_num,line_num,method_num,l)

			# Build Ensemble Data (w/o gapping method per LOS)	
			enc_r.extend(en_r)
			enc_v.extend(en_v)
			enc_mag.extend(en_mags)
			enc_gpx3d.extend(en_gpx3d)
			enc_gpy3d.extend(en_gpy3d)
			enc_gpz3d.extend(en_gpz3d)
			enc_gvx3d.extend(en_gvx3d)
			enc_gvy3d.extend(en_gvy3d)
			enc_gvz3d.extend(en_gvz3d)

			# Calculate LOS HVD (after interloper removal)
			gal_count = len(where( r<R_crit200[k] )[0] )
			if gal_count <= 3:
				'''biweightScale freaks out w/ less than 3 data points'''
				gal_vdisp = std(copy(v)[where( r<R_crit200[k] )])
			if gal_count > 3:	# This is the best way to calculate vdisp
				gal_vdisp = biweightScale(copy(v)[where( r<R_crit200[k] )],9.0)

			# Running Mass Estimation on Line of Sight 
			x_range,line_diamass,line_infmass,line_dia_cau,line_inf_cau,line_inf_nfw = self.self_stack_kernel_caustic_masscalc(r,v,line_diamass,line_infmass,line_dia_cau,line_inf_cau,line_inf_nfw,R_crit200[k],M_crit200[k],SRAD[k],ESRAD[k],gal_vdisp,r_limit,vlimit,H0,q,k,root,beta,l,samp_size=samp_size)
	
			# Append LOS Data
			line_vdisp.append(gal_vdisp)
			line_r.append(r)
			line_v.append(v)
			line_mag.append(mags)

		# Shift Gapper Method to remove interlopers (for the ensemble)
		enc_r,enc_v,enc_mag,enc_gpx3d,enc_gpy3d,enc_gpz3d,enc_gvx3d,enc_gvy3d,enc_gvz3d = U.shiftgapper(vstack((enc_r,enc_v,enc_mag,enc_gpx3d,enc_gpy3d,enc_gpz3d,enc_gvx3d,enc_gvy3d,enc_gvz3d)).T).T
		# Reduce system to gal_num*line_num gals within r200
		within = where(enc_r<R_crit200[k])[0]
		end = within[:gal_num*line_num][-1] + 1
		enc_r,enc_v,enc_mag,enc_gpx3d,enc_gpy3d,enc_gpz3d,enc_gvx3d,enc_gvy3d,enc_gvz3d = enc_r[:end],enc_v[:end],enc_mag[:end],enc_gpx3d[:end],enc_gpy3d[:end],enc_gpz3d[:end],enc_gvx3d[:end],enc_gvy3d[:end],enc_gvz3d[:end] 
		# Calculate Ensemble HVD
		enc_vdisp = biweightScale(copy(enc_v)[where( enc_r<R_crit200[k] )],9.0)
		#Ensemble Arrays
		ENC_R.append(enc_r)
		ENC_V.append(enc_v)
		ENC_MAG.append(enc_mag)
		ENC_VDISP.append(enc_vdisp)
		ENC_GPX3D.append(enc_gpx3d)
		ENC_GPY3D.append(enc_gpy3d)
		ENC_GPZ3D.append(enc_gpz3d)
		ENC_GVX3D.append(enc_gvx3d)
		ENC_GVY3D.append(enc_gvy3d)
		ENC_GVZ3D.append(enc_gvz3d)

		#Line of Sight Arrays
		LINE_DIAMASS.append(line_diamass)
		LINE_INFMASS.append(line_infmass)
		LINE_DIACAU.append(line_dia_cau)
		LINE_VDISP.append(line_vdisp)
		LINE_R.append(line_r)
		LINE_V.append(line_v)
		LINE_MAG.append(line_mag)

		return ENC_R,ENC_V,ENC_MAG,ENC_VDISP,ENC_GPX3D,ENC_GPY3D,ENC_GPZ3D,ENC_GVX3D,ENC_GVY3D,ENC_GVZ3D,LINE_VDISP,LINE_DIAMASS,LINE_INFMASS,LINE_DIACAU,LINE_R,LINE_V,LINE_MAG
Пример #11
0
	def bin_clusters(self,ENC_R,ENC_V,ENC_MAG,ENC_VDISP,ENC_R200,ENC_M200,ENC_SRAD,ENC_ESRAD,ENC_GPX3D,ENC_GPY3D,ENC_GPZ3D,ENC_GVX3D,ENC_GVY3D,ENC_GVZ3D,LINE_VDISP,Gal_P,Gal_V,Halo_P,Halo_V,M_crit200,R_crit200,SRAD,ESRAD,MAGS,k,r_limit,vlimit,gal_num,line_num,H0,q,c,LINE_DIAMASS,LINE_INFMASS,LINE_DIACAU,LINE_DISSECT,root,beta,scale_data):
	
		#update bin range: list of halo ids who belong in the kth ensemble
		bin_range = arange(k*line_num,k*line_num+line_num,1,int)

		#Binning arrays
		enc_r = []
		enc_v = []
		enc_mag = []
		enc_gpx3d = []
		enc_gpy3d = []
		enc_gpz3d = []
		enc_gvx3d = []
		enc_gvy3d = []
		enc_gvz3d = []

		#Line of sight arrays
		line_diamass = []
		line_infmass = []
		line_dia_cau = []
		line_inf_cau = []
		line_inf_nfw = []
		line_vdisp = []
		line_r = []
		line_v = []
		line_mag = []
		line_dissect = []

		#Loop over binned halos
		for l in bin_range:
						
			#Line of Sight Calculation
			r,v = U.line_of_sight(Gal_P[l],Gal_V[l],Halo_P[l],Halo_V[l],H0,c)
	
			#Limit Data
			r,v,mags,gal_vdisp,gpx3d,gpy3d,gpz3d,gvx3d,gvy3d,gvz3d = self.limit_gals(r,v,MAGS[l],R_crit200[l],Gal_P[l],Gal_V[l],r_limit,vlimit,gal_num,line_num,l)
			line_dissect.append( len(r) )

			# Append LOS RV arrays
			line_r.append(r)
			line_v.append(v)
			line_mag.append(mags)		
	
			#Scale Data
			if scale_data == True:
				r,v = self.scale_gals(r,v,R_crit200[l],gal_vdisp)

			# Do Mass Estimation for each Line of Sight 
			x_range,line_diamass,line_infmass,line_dia_cau,line_inf_cau,line_inf_nfw = self.kernel_caustic_masscalc(r,v,line_diamass,line_infmass,line_dia_cau,line_inf_cau,line_inf_nfw,R_crit200[l],M_crit200[l],SRAD[l],ESRAD[l],gal_vdisp,r_limit,vlimit,H0,q,k,root,beta,l=l)
			
			enc_r.extend(r)
			enc_v.extend(v)
			enc_mag.extend(mags)
			enc_gpx3d.extend(gpx3d)
			enc_gpy3d.extend(gpy3d)
			enc_gpz3d.extend(gpz3d)
			enc_gvx3d.extend(gvx3d)
			enc_gvy3d.extend(gvy3d)
			enc_gvz3d.extend(gvz3d)

			line_vdisp.append(gal_vdisp)

		# Shift Gapper Method to remove interlopers
		enc_r,enc_v,enc_mag,enc_gpx3d,enc_gpy3d,enc_gpz3d,enc_gvx3d,enc_gvy3d,enc_gvz3d = U.shiftgapper(vstack((enc_r,enc_v,enc_mag,enc_gpx3d,enc_gpy3d,enc_gpz3d,enc_gvx3d,enc_gvy3d,enc_gvz3d)).T).T

		# Calculated or Average Ensemble Properties
		enc_vdisp = biweightScale(copy(enc_v)[where( copy(enc_r)<R_crit200[l] )[0]],9.0)
		ENC_R200.append(U.bin_meancalc(R_crit200[bin_range]))
		ENC_M200.append(U.bin_medcalc(M_crit200[bin_range]))
		ENC_SRAD.append(U.bin_meancalc(SRAD[bin_range]))
		ENC_ESRAD.append(U.bin_meancalc(ESRAD[bin_range]))

		#Ensemble Arrays
		ENC_R.append(enc_r)
		ENC_V.append(enc_v)
		ENC_MAG.append(enc_mag)
		ENC_VDISP.append(enc_vdisp)
		ENC_GPX3D.append(enc_gpx3d)
		ENC_GPY3D.append(enc_gpy3d)
		ENC_GPZ3D.append(enc_gpz3d)
		ENC_GVX3D.append(enc_gvx3d)
		ENC_GVY3D.append(enc_gvy3d)
		ENC_GVZ3D.append(enc_gvz3d)

		#Line of Sight Arrays
		LINE_DIAMASS.append(line_diamass)
		LINE_INFMASS.append(line_infmass)
		LINE_DIACAU.append(line_dia_cau)
		LINE_VDISP.append(line_vdisp)
		LINE_DISSECT.append(line_dissect)

		return ENC_R,ENC_V,ENC_MAG,ENC_VDISP,ENC_R200,ENC_M200,ENC_SRAD,ENC_ESRAD,ENC_GPX3D,ENC_GPY3D,ENC_GPZ3D,ENC_GVX3D,ENC_GVY3D,ENC_GVZ3D,LINE_VDISP,LINE_DIAMASS,LINE_INFMASS,LINE_DIACAU,LINE_DISSECT
Пример #12
0
def ss_recover():
    # Preliminary data file upload
    global h, gal_num, line_num, halo_num, r_limit, vlimit, beta
    h, gal_num, line_num, halo_num, r_limit, vlimit, beta = loadtxt(
        ""
        + root
        + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
        + str(run_loc)
        + "/program_constants.tab",
        unpack=True,
    )
    halo_num = int(halo_num)
    line_num, gal_num = int(line_num), int(gal_num)

    # Second preliminary data file upload
    global HaloID, M_crit200, R_crit200, SRAD, ESARD, HVD
    HaloID, M_crit200, R_crit200, SRAD, ESRAD, HVD = loadtxt(
        "" + root + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/" + str(run_loc) + "/simdata.tab",
        unpack=True,
    )
    HaloID = str(HaloID)
    HaloID, M_crit200, R_crit200, SRAD, ESRAD, HVD = (
        HaloID[:halo_num],
        M_crit200[:halo_num],
        R_crit200[:halo_num],
        SRAD[:halo_num],
        ESRAD[:halo_num],
        HVD[:halo_num],
    )

    # First Data file upload
    global ENC_CAUMASS, ENC_INFMASS, ENC_VDISP
    j = 0
    for m in range(halo_num):
        if j == 0:  # Initialization of arrays
            ENC_CAUMASS, ENC_INFMASS, ENC_VDISP = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_constants.tab",
                usecols=(0, 1, 2),
                unpack=True,
            )
        else:
            ENC_CAUMASSt, ENC_INFMASSt, ENC_VDISPt = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_constants.tab",
                usecols=(0, 1, 2),
                unpack=True,
            )
            ENC_CAUMASS = hstack([ENC_CAUMASS, ENC_CAUMASSt])
            ENC_INFMASS = hstack([ENC_INFMASS, ENC_INFMASSt])
            ENC_VDISP = hstack([ENC_VDISP, ENC_VDISPt])
        j += 1

        # Second data file upload
    global LINE_CAUMASS, LINE_INFMASS, LINE_VDISP
    j = 0
    for m in range(halo_num):
        if j == 0:  # Initialization of arrays
            LINE_CAUMASS, LINE_INFMASS, LINE_VDISP = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_linenum.tab",
                unpack=True,
            )
        else:
            line_caumass, line_infmass, line_vdisp = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_linenum.tab",
                unpack=True,
            )
            LINE_CAUMASS = vstack([LINE_CAUMASS, line_caumass])
            LINE_INFMASS = vstack([LINE_INFMASS, line_infmass])
            LINE_VDISP = vstack([LINE_VDISP, line_vdisp])
        j += 1

        # Third data file upload
    global ENC_CAUSURF, ENC_INFSURF, ENC_INFNFW, x_range
    j = 0
    for m in range(halo_num):
        if j == 0:  # Initialization of arrays
            ENC_CAUSURF, ENC_INFSURF, ENC_INFNFW, x_range = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_profiles.tab",
                unpack=True,
            )
        else:
            enc_causurf, enc_infsurf, enc_infnfw, x_range = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_profiles.tab",
                unpack=True,
            )
            ENC_CAUSURF = vstack([ENC_CAUSURF, enc_causurf])
            ENC_INFSURF = vstack([ENC_INFSURF, enc_infsurf])
            ENC_INFNFW = vstack([ENC_INFNFW, enc_infnfw])
        j += 1

        # Fourth data file upload
    global ENC_R, ENC_V, ENC_MAG, ENC_GPX3D, ENC_GPY3D, ENC_GPZ3D, ENC_GVX3D, ENC_GVY3D, ENC_GVZ3D
    ENC_R, ENC_V, ENC_MAG, ENC_GPX3D, ENC_GPY3D, ENC_GPZ3D, ENC_GVX3D, ENC_GVY3D, ENC_GVZ3D = (
        [],
        [],
        [],
        [],
        [],
        [],
        [],
        [],
        [],
    )
    j = 0
    for m in range(halo_num):
        enc_r, enc_v, enc_mag, enc_gpx3d, enc_gpy3d, enc_gpz3d, enc_gvx3d, enc_gvy3d, enc_gvz3d = loadtxt(
            ""
            + root
            + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
            + str(run_loc)
            + "/halo_"
            + str(m)
            + "_RVdata.tab",
            unpack=True,
        )
        ENC_R.append(enc_r)
        ENC_V.append(enc_v)
        ENC_MAG.append(enc_mag)
        ENC_GPX3D.append(enc_gpx3d)
        ENC_GPY3D.append(enc_gpy3d)
        ENC_GPZ3D.append(enc_gpz3d)
        ENC_GVX3D.append(enc_gvx3d)
        ENC_GVY3D.append(enc_gvy3d)
        ENC_GVZ3D.append(enc_gvz3d)
        j += 1
    ENC_R, ENC_V, ENC_MAG, ENC_GPX3D, ENC_GPY3D, ENC_GPZ3D, ENC_GVX3D, ENC_GVY3D, ENC_GVZ3D = (
        array(ENC_R),
        array(ENC_V),
        array(ENC_MAG),
        array(ENC_GPX3D),
        array(ENC_GPY3D),
        array(ENC_GPZ3D),
        array(ENC_GVX3D),
        array(ENC_GVY3D),
        array(ENC_GVZ3D),
    )
    # Fifth data file to upload
    global LINE_CAUSURF
    j = 0
    for m in range(halo_num):
        if j == 0:
            line_prof = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_losprofile.tab",
                unpack=True,
            )
            LINE_CAUSURF = array([line_prof[0:line_num]])
        else:
            line_prof = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_losprofile.tab",
                unpack=True,
            )
            line_causurf = array([line_prof[0:line_num]])
            LINE_CAUSURF = vstack([LINE_CAUSURF, line_causurf])
        j += 1

        # Sixth data set upload (los rv data)
    if get_los == True:
        global LINE_R, LINE_V, LINE_MAG
        LINE_R, LINE_V, LINE_MAG = [], [], []
        j = 0
        for m in range(halo_num):
            line_r, line_v, line_mag = [], [], []
            for l in range(line_num):
                r, v, mag = loadtxt(
                    ""
                    + root
                    + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                    + str(run_loc)
                    + "/LOS_RV/halo_"
                    + str(m)
                    + "_los_"
                    + str(l)
                    + "_rv.tab",
                    unpack=True,
                )
                line_r.append(r)
                line_v.append(v)
                line_mag.append(mag)
            LINE_R.append(line_r)
            LINE_V.append(line_v)
            LINE_MAG.append(line_mag)
        LINE_R, LINE_V, LINE_MAG = array(LINE_R), array(LINE_V), array(LINE_MAG)

        # Other data arrays to use:
    global avg_mfrac, avg_hvdfrac, stack_mfrac, stack_hvdfrac, maLINE_CAUMASS, maLINE_VDISP
    global stack_mbias, stack_mscat, stack_vbias, stack_vscat, avg_mbias, avg_mscat, avg_vbias, avg_vscat

    maLINE_CAUMASS = ma.masked_array(LINE_CAUMASS, mask=LINE_CAUMASS == 0)  # Mask 0 Values
    maLINE_VDISP = ma.masked_array(LINE_VDISP, mask=LINE_VDISP == 0)  # Mask 0 Values

    ### Mass Fractions ###
    # Note: I was using map() as an iterator, but for N = 5, sometimes there are less than 3 non-masked values per los
    # Note: and biweight###() does not take less than 4 unique values. I don't yet know how to incorporate a "try:"
    # Note: statement into an iterator function like map(), so I resort to a "for" loop
    ## Ensemble fractions
    stack_mfrac = ma.log(ENC_CAUMASS / M_crit200)
    stack_hvdfrac = ma.log(ENC_VDISP / HVD)
    ## Averaged fractions
    a_size = halo_num  # This becomes line_num if doing vertical average first!!
    avg_mfrac, avg_hvdfrac = zeros(a_size), zeros(a_size)
    for a in range(a_size):
        try:
            avg_mfrac[a] = astStats.biweightLocation(ma.copy(ma.log(maLINE_CAUMASS[a] / M_crit200[a])), 6.0)
            avg_hvdfrac[a] = astStats.biweightLocation(ma.copy(ma.log(maLINE_VDISP[a] / HVD[a])), 6.0)
        except:
            avg_mfrac[a] = ma.mean(ma.log(maLINE_CAUMASS[a] / M_crit200[a]))
            avg_hvdfrac[a] = ma.mean(ma.log(maLINE_VDISP[a] / M_crit200[a]))
            # Bias and Scatter for Ensemble and LOS Average Systems
    stack_mbias, stack_mscat = (
        astStats.biweightLocation(ma.copy(stack_mfrac), 6.0),
        astStats.biweightScale(ma.copy(stack_mfrac), 9.0),
    )
    avg_mbias, avg_mscat = (
        astStats.biweightLocation(ma.copy(avg_mfrac), 6.0),
        astStats.biweightScale(ma.copy(avg_mfrac), 9.0),
    )
    stack_vbias, stack_vscat = (
        astStats.biweightLocation(ma.copy(stack_hvdfrac), 6.0),
        astStats.biweightScale(ma.copy(stack_hvdfrac), 9.0),
    )
    avg_vbias, avg_vscat = (
        astStats.biweightLocation(ma.copy(avg_hvdfrac), 6.0),
        astStats.biweightScale(ma.copy(avg_hvdfrac), 9.0),
    )
Пример #13
0
	def stat_calc(self,MASS_EST,MASS_TRUE,HVD_EST,HVD_TRUE,data_set=None,ens=True):
		''' Does bias and scatter calculations '''
		# Cut data set if necessary
		if data_set == 'cut_low_mass':
			'''Cutting all 'true' mass estimates below 1e14 off'''
			cut = np.where(MASS_TRUE>1e14)[0]
			MASS_EST = MASS_EST[cut]
			MASS_TRUE = MASS_TRUE[cut]
			HVD_EST = HVD_EST[cut]
			HVD_TRUE = HVD_TRUE[cut]	

		# Define a Masked array for sometimes zero terms
		epsilon = 10.0
		use_est = False				# Use MassCalc estimated r200 mass values if true 
		maMASS_EST	= ma.masked_array(MASS_EST,mask=MASS_EST<epsilon)		# Mask essentially zero values
		maHVD_EST	= ma.masked_array(HVD_EST,mask=HVD_EST<epsilon)


		# Mass / HVD Fractions
		if ens == True:
			# Ensemble Arrays
			MFRAC = np.log(maMASS_EST/MASS_TRUE)
			VFRAC = np.log(maHVD_EST/HVD_TRUE)
		else:
			# LOS Mass Fraction Arrays: 0th axis is halo number, 1st axis is line of sight number
			MFRAC,VFRAC = [],[]
			for a in range(len(MASS_EST)):
				MFRAC.append( ma.log( maMASS_EST[a]/MASS_TRUE[a] ) )
				VFRAC.append( ma.log( maHVD_EST[a]/HVD_TRUE[a] ) )
			MFRAC,VFRAC = np.array(MFRAC),np.array(VFRAC)

		if ens == True:
			mbias,mscat = astStats.biweightLocation(MFRAC,6.0),astStats.biweightScale(MFRAC,9.0)
			vbias,vscat = astStats.biweightLocation(VFRAC,6.0),astStats.biweightScale(VFRAC,9.0)
			return MFRAC,mbias,mscat,VFRAC,vbias,vscat
		else:
			if self.ss:
				# Create vertically averaged (by halo averaged) arrays, with line_num elements
				# biweightLocation takes only arrays with 4 or more elements
				HORZ_MFRAC,HORZ_VFRAC = [],[]
				VERT_MFRAC,VERT_VFRAC = [],[]
				for a in range(self.line_num):
					if len(ma.compressed(MFRAC[:,a])) > 4:
						VERT_MFRAC.append( astStats.biweightLocation( ma.compressed( MFRAC[:,a] ), 6.0 ) )
						VERT_VFRAC.append( astStats.biweightLocation( ma.compressed( VFRAC[:,a] ), 6.0 ) )
					else:
						VERT_MFRAC.append( np.median( ma.compressed( MFRAC[:,a] ) ) )
						VERT_VFRAC.append( np.median( ma.compressed( VFRAC[:,a] ) ) )
				VERT_MFRAC,VERT_VFRAC = np.array(VERT_MFRAC),np.array(VERT_VFRAC)
				# Create horizontally averaged (by line of sight) arrays, with halo_num elements
				for a in self.halo_range:
					if len(ma.compressed(MFRAC[a])) > 4:
						HORZ_MFRAC.append( astStats.biweightLocation( ma.compressed( MFRAC[a] ), 6.0 ) )
						HORZ_VFRAC.append( astStats.biweightLocation( ma.compressed( VFRAC[a] ), 6.0 ) )
					else:
						HORZ_MFRAC.append( np.median( ma.compressed( MFRAC[a] ) ) )
						HORZ_VFRAC.append( np.median( ma.compressed( VFRAC[a] ) ) )
				HORZ_MFRAC,HORZ_VFRAC = np.array(HORZ_MFRAC),np.array(HORZ_VFRAC)
				# Bias and Scatter Calculations
				mbias,mscat = astStats.biweightLocation(VERT_MFRAC,6.0),astStats.biweightScale(VERT_MFRAC,9.0)
				vbias,vscat = astStats.biweightLocation(VERT_VFRAC,6.0),astStats.biweightScale(VERT_VFRAC,9.0)
			else:
				# Bin stack LOS systems need only one average
				mbias,mscat = astStats.biweightLocation(MFRAC,6.0),astStats.biweightScale(MFRAC,9.0)
				vbias,vscat = astStats.biweightLocation(VFRAC,6.0),astStats.biweightScale(VFRAC,9.0)

			return MFRAC,mbias,mscat,VFRAC,vbias,vscat
Пример #14
0
        mem_flag = 1 #This is a flag to alerting to (1) if members > 0 and (0) if not. Affects number output.
        #Get current galaxy info
        print 'GETTING GALAXIES'
        part_xpos,part_ypos,part_zpos,part_vx,part_vy,part_vz = G.get_particles(HaloID[i],H0)
        gal_p = np.array([part_xpos,part_ypos,part_zpos])
        gal_v = np.array([part_vx,part_vy,part_vz])

        #organize the current halo position and velocity
        Halo_P = np.array([Halo_PX[i],Halo_PY[i],Halo_PZ[i]]) #current halo position
        Halo_V = np.array([Halo_VX[i],Halo_VY[i],Halo_VZ[i]]) #current halo velocity

        #calculate the radial position of every particle we have loaded, as well as the total velocity.
        r_pos = np.sqrt((part_xpos-Halo_P[0])**2+(part_ypos-Halo_P[1])**2+(part_zpos-Halo_P[2])**2)
        
        #calculate vdisp of particles
        HVD = np.sqrt(astStats.biweightScale(part_vx[np.where(r_pos<=HaloR200[i])]-Halo_V[0],9.0)**2+astStats.biweightScale(part_vy[np.where(r_pos<=HaloR200[i])]-Halo_V[1],9.0)**2+astStats.biweightScale(part_vz[np.where(r_pos<=HaloR200[i])]-Halo_V[2],9.0)**2)/np.sqrt(3)

        #Define the filename(s) to output the results
        if use_mems == True:
            f = open('files/'+str(rich_lim)+'n/'+str(HaloID[i])+'.minimill_masses_'+str(rich_lim)+'n_mems.tab','w')
        elif use_vdisp == True:
            f = open('files/'+str(rich_lim)+'n/'+str(HaloID[i])+'.minimill_masses_'+str(rich_lim)+'n_vdisp_los_part.tab','w')
        else:
            f = open('files/'+str(rich_lim)+'n/'+str(HaloID[i])+'.minimill_masses_'+str(rich_lim)+'n_los_part.tab','w')
        
        line_mass = np.zeros(line_num) #empty array for different lines of sight masses
        vdispersion = np.zeros(line_num) #empty array for different lines of sight vdisp
        #line_error = np.zeros(line_num) #empty array for the errors above

        for j in range(line_num): #loop over different lines of sight
            #define r200 and limits to select our particles for the caustic estimation
Пример #15
0
            gal_pos_vect = np.zeros((3,gal_dist.size))
            code = """
            int u,w;
            for (u=0;u<n;++u){
            for(w=0;w<3;++w){
                gal_pos_vect(w,u) = (gal_p(w,u)-new_pos(w))/gal_dist(u);
                }
            gal_vlos(u) = gal_pos_vect(0,u)*gal_v(0,u)+gal_pos_vect(1,u)*gal_v(1,u)+gal_pos_vect(2,u)*gal_v(2,u);
            }
            """
            fast = weave.inline(code,['gal_pos_vect','n','gal_dist','gal_vlos','gal_v','new_pos','gal_p'],type_converters=converters.blitz,compiler='gcc')
            angles = np.arccos(np.dot(halo_pos_vect,gal_pos_vect))
            '''
            r = gal_radius#angles*halo_dist
            v = gal_velocity#gal_vlos-halo_vlos*np.dot(halo_pos_vect,gal_pos_vect)
            gal_vdisp3d[i] = np.sqrt(astStats.biweightScale(gal_v[0][np.where(gal_radius<=HaloR200[i])]-Halo_V[0],9.0)**2+astStats.biweightScale(gal_v[1][np.where(gal_radius<=HaloR200[i])]-Halo_V[1],9.0)**2+astStats.biweightScale(gal_v[2][np.where(gal_radius<=HaloR200[i])]-Halo_V[2],9.0)**2)/np.sqrt(3)
            #print 'MY VELOCITY OF GALAXIES', gal_vdisp3d[i]
            particle_vdisp3d[i] = HVD*np.sqrt(3)
            gal_rmag_new = gal_abs_rmag# + 5*np.log10(gal_dist*1e6/10.0)
            '''
            rand_r200 = findr200(r,v,gal_rmag_new,angles,gal_lumdist,HaloAD[i],H0)*0.615#*1.1
            vlimit = 3500
            rlimit = rand_r200*1.25
            '''
            #import average beta profile and create a fit. Apply fit to your xvalues later in code
            xbeta,abeta = np.loadtxt('data/average_betaprofile.tab',dtype='float',usecols=(0,1),unpack=True)
            fit = np.polyfit((xbeta*rand_r200)[xbeta<4],abeta[xbeta<4],6)
            

            ###################################
            #End of line of sight calculations#
Пример #16
0
    def __init__(self,data,gal_mags=None,gal_memberflag=None,clus_ra=None,clus_dec=None,clus_z=None,gal_r=None,gal_v=None,r200=None,clus_vdisp=None,rlimit=4.0,vlimit=3500,q=10.0,H0=100.0,xmax=6.0,ymax=5000.0,cut_sample=True,gapper=True,mirror=True,absflag=False):
        self.clus_ra = clus_ra
        self.clus_dec = clus_dec
        self.clus_z = clus_z
        if gal_r == None:
            if self.clus_ra == None:
                #calculate average ra from galaxies
                self.clus_ra = np.average(data[:,0])
            if self.clus_dec == None:
                #calculate average dec from galaxies
                self.clus_dec = np.average(data[:,1])
            
            #Reduce data set to only valid redshifts
            data_spec = data[np.where((np.isfinite(data[:,2])) & (data[:,2] > 0.0) & (data[:,2] < 5.0))]

            if self.clus_z == None:
                #calculate average z from galaxies
                self.clus_z = np.average(data_spec[:,2])
            
            #calculate angular diameter distance. 
            #Variable self.ang_d
            self.ang_d,self.lum_d = self.zdistance(self.clus_z,H0) 
            
            #calculate the spherical angles of galaxies from cluster center.
            #Variable self.angle
            self.angle = self.findangle(data_spec[:,0],data_spec[:,1],self.clus_ra,self.clus_dec)


            self.r = self.angle*self.ang_d
            self.v = c*(data_spec[:,2] - self.clus_z)/(1+self.clus_z)
        else:
            data_spec = data[np.where(np.isfinite(gal_v))]
            self.r = gal_r
            self.v = gal_v

        
        #package galaxy data, USE ASTROPY TABLE HERE!!!!!
        if gal_memberflag is None:
            self.data_table = np.vstack((self.r,self.v,data_spec.T)).T
        else:
            self.data_table = np.vstack((self.r,self.v,data_spec.T,gal_memberflag)).T
        
        #reduce sample within limits
        if cut_sample == True:
            self.data_set = self.set_sample(self.data_table,rlimit=rlimit,vlimit=vlimit)
        else:
            self.data_set = self.data_table

        #further select sample via shifting gapper
        if gapper == True:
            self.data_set = self.shiftgapper(self.data_set)
        print 'DATA SET SIZE',self.data_set[:,0].size
        '''
        #tries to identify double groups that slip through the gapper process
        upper_max = np.max(self.data_set[:,1][np.where((self.data_set[:,1]>0.0)&(self.data_set[:,0]<1.0))])
        lower_max = np.min(self.data_set[:,1][np.where((self.data_set[:,1]<0.0)&(self.data_set[:,0]<1.0))])
        if np.max(np.array([upper_max,-lower_max])) > 1000.0+np.min(np.array([upper_max,-lower_max])):
            self.data_set = self.data_set[np.where(np.abs(self.data_set[:,1])<1000.0+np.min(np.array([upper_max,-lower_max])))]
        '''
        if absflag:
            abs_mag = self.data_table[:,5]
        else:
            abs_mag = self.data_table[:,7] - magnitudes.distance_modulus(self.clus_z,**fidcosmo)
        self.Ngal_1mpc = self.r[np.where((abs_mag < -20.55) & (self.r < 1.0) & (np.abs(self.v) < 3500))].size
        if r200 == None:
            self.r200 = 0.01*self.Ngal_1mpc+0.584#+np.random.normal(0,0.099)
            #vdisp_prelim = astStats.biweightScale(self.data_set[:,1][np.where(self.data_set[:,0]<3.0)],9.0)
            #r200_mean_prelim = 0.002*vdisp_prelim + 0.40
            #self.r200 = r200_mean_prelim/1.7
            '''
            #original r200 est
            rclip,vclip = self.shiftgapper(np.vstack((self.r[np.where((self.r<3.0) & (np.abs(self.v)<3500.0))],self.v[np.where((self.r<3.0) & (np.abs(self.v)<3500.0))])).T).T
            vdisp_prelim_1 = astStats.biweightClipped(vclip,9.0,3.0)['biweightScale']
            rclip,vclip = self.shiftgapper(np.vstack((self.r[np.where((self.r<1.5) & (np.abs(self.v)<3500.0))],self.v[np.where((self.r<1.5) & (np.abs(self.v)<3500.0))])).T).T
            vdisp_prelim_2 = astStats.biweightClipped(vclip,9.0,3.0)['biweightScale']
            if vdisp_prelim_2 < 0.6*vdisp_prelim_1: vdisp_prelim = vdisp_prelim_2
            else: vdisp_prelim = vdisp_prelim_1
            r200_mean_prelim = 0.002*vdisp_prelim + 0.40
            self.r200 = r200_mean_prelim/1.7
            '''
            if self.r200 > 3.0:
                self.r200 = 3.0
            if 3.0*self.r200 < 6.0:
                rlimit = 3.0*self.r200
            else:
                rlimit = 5.5

        else:
            self.r200 = r200
        print 'Pre_r200=',self.r200

        if mirror == True:
            print 'Calculating Density w/Mirrored Data'
            self.gaussian_kernel(np.append(self.data_set[:,0],self.data_set[:,0]),np.append(self.data_set[:,1],-self.data_set[:,1]),self.r200,normalization=H0,scale=q,xmax=xmax,ymax=ymax,xres=200,yres=220)
        else:
            print 'Calculating Density'
            self.gaussian_kernel(self.data_set[:,0],self.data_set[:,1],self.r200,normalization=H0,scale=q,xmax=xmax,ymax=ymax,xres=200,yres=220)
        self.img_tot = self.img/np.max(np.abs(self.img))
        self.img_grad_tot = self.img_grad/np.max(np.abs(self.img_grad))
        self.img_inf_tot = self.img_inf/np.max(np.abs(self.img_inf))
        
        if clus_vdisp is None:
            self.pre_vdisp = 9.15*self.Ngal_1mpc+350.32
            print 'Pre_vdisp=',self.pre_vdisp
            print 'Ngal<1Mpc=',self.Ngal_1mpc
            v_cut = self.data_set[:,1][np.where((self.data_set[:,0]<self.r200) & (np.abs(self.data_set[:,1])<5000.0))]
            try:
                self.pre_vdisp2 = astStats.biweightScale(v_cut,9.0)
            except:
                self.pre_vdisp2 = np.std(v_cut,ddof=1)
            print 'Vdisp from galaxies=',self.pre_vdisp2
            if self.data_set[:,0].size < 15: 
                self.v_unc = 0.35
                self.c_unc_sys = 0.75
                self.c_unc_int = 0.35
            elif self.data_set[:,0].size < 25 and self.data_set[:,0].size >= 15: 
                self.v_unc = 0.30
                self.c_unc_sys = 0.55
                self.c_unc_int = 0.22
            elif self.data_set[:,0].size < 50 and self.data_set[:,0].size >= 25: 
                self.v_unc = 0.23
                self.c_unc_sys = 0.42
                self.c_unc_int = 0.16
            elif self.data_set[:,0].size < 100 and self.data_set[:,0].size >= 50: 
                self.v_unc = 0.18
                self.c_unc_sys = 0.34
                self.c_unc_int = 0.105
            else: 
                self.v_unc = 0.15
                self.c_unc_sys = 0.29
                self.c_unc_int = 0.09
            
            if self.pre_vdisp2 > 1.75*self.pre_vdisp: self.pre_vdisp_comb = 9.15*self.Ngal_1mpc+450.32
            else:
                self.pre_vdisp_comb = self.pre_vdisp2
            '''
            if self.data_set[:,1][np.where(self.data_set[:,0]<self.r200)].size >= 10:
                self.pre_vdisp_comb = astStats.biweightScale(self.data_set[:,1][np.where(self.data_set[:,0]<self.r200)],9.0)
            else:
                self.pre_vdisp_comb = np.std(self.data_set[:,1][np.where(self.data_set[:,0]<self.r200)],ddof=1)
                #self.pre_vdisp_comb = (self.pre_vdisp*(self.pre_vdisp2*self.v_unc)**2+self.pre_vdisp2*118.14**2)/(118.14**2+(self.pre_vdisp2*self.v_unc)**2)
            '''
        else:
            self.pre_vdisp_comb = clus_vdisp
        print 'Combined Vdisp=',self.pre_vdisp_comb

        self.beta = 0.5*self.x_range/(self.x_range + self.r200/4.0)
        #Identify initial caustic surface and members within the surface
        print 'Calculating initial surface'
        if gal_memberflag is None:
            self.Caustics = CausticSurface(self.data_set,self.x_range,self.y_range,self.img_tot,r200=self.r200,halo_vdisp=self.pre_vdisp_comb,beta=None)
        else:
            self.Caustics = CausticSurface(self.data_set,self.x_range,self.y_range,self.img_tot,memberflags=self.data_set[:,-1],r200=self.r200)

        self.caustic_profile = self.Caustics.Ar_finalD
        self.caustic_fit = self.Caustics.vesc_fit
        self.gal_vdisp = self.Caustics.gal_vdisp
        self.memflag = self.Caustics.memflag

        #Estimate the mass based off the caustic profile, beta profile (if given), and concentration (if given)
        if clus_z is not None:
            #self.Mass = MassCalc(self.x_range,self.caustic_profile,self.gal_vdisp,self.clus_z,r200=self.r200,fbr=None,H0=H0)
            #self.Mass2 = MassCalc(self.x_range,self.caustic_profile,self.gal_vdisp,self.clus_z,r200=self.r200,fbr=0.65,H0=H0)
            self.Mass = MassCalc(self.x_range,self.caustic_fit,self.gal_vdisp,self.clus_z,r200=self.r200,fbr=None,H0=H0)
            self.Mass2 = MassCalc(self.x_range,self.caustic_fit,self.gal_vdisp,self.clus_z,r200=self.r200,fbr=0.65,H0=H0)


            self.r200_est = self.Mass.r200_est
            self.r200_est_fbeta = self.Mass2.r200_est
            self.M200_est = self.Mass.M200_est
            self.M200_est_fbeta = self.Mass2.M200_est

            print 'r200 estimate: ',self.Mass.r200_est
            print 'M200 estimate: ',self.Mass.M200_est

            self.Ngal = self.data_set[np.where((self.memflag==1)&(self.data_set[:,0]<=self.r200_est))].shape[0]

            #calculate velocity dispersion
        try:
            self.vdisp_gal = astStats.biweightScale(self.data_set[:,1][self.memflag==1],9.0)
        except:
            try:
                self.vdisp_gal = np.std(self.data_set[:,1][self.memflag==1],ddof=1)
            except:
                self.vdisp_gal = 0.0
        '''
Пример #17
0
    def __init__(self,
                 data,
                 ri,
                 vi,
                 Zi,
                 memberflags=None,
                 r200=2.0,
                 maxv=5000.0,
                 halo_scale_radius=None,
                 halo_scale_radius_e=0.01,
                 halo_vdisp=None,
                 bin=None,
                 plotphase=False,
                 beta=None):
        kappaguess = np.max(Zi)  #first guess at the level
        self.levels = np.linspace(
            0.00001, kappaguess, 100)[::-1]  #create levels (kappas) to try out
        fitting_radii = np.where(
            (ri >= r200 / 3.0) & (ri <= r200)
        )  #when fitting an NFW (later), this defines the r range to fit within

        self.r200 = r200

        if halo_scale_radius is None:
            self.halo_scale_radius = self.r200 / 5.0
        else:
            self.halo_scale_radius = halo_scale_radius
            self.halo_scale_radius_e = halo_scale_radius_e

        if beta is None:
            self.beta = 0.2 + np.zeros(ri.size)
        else:
            self.beta = beta
        self.gb = (3 - 2.0 * self.beta) / (1 - self.beta)

        #Calculate velocity dispersion with either members, fed value, or estimate using 3.5sigma clipping
        if memberflags is not None:
            vvarcal = data[:, 1][np.where(memberflags == 1)]
            try:
                self.gal_vdisp = astStats.biweightScale(
                    vvarcal[np.where(np.isfinite(vvarcal))], 9.0)
                print 'O ya! membership calculation!'
            except:
                self.gal_vdisp = np.std(vvarcal, ddof=1)
            self.vvar = self.gal_vdisp**2
        elif halo_vdisp is not None:
            self.gal_vdisp = halo_vdisp
            self.vvar = self.gal_vdisp**2
        else:
            #Variable self.gal_vdisp
            try:
                self.findvdisp(data[:, 0], data[:, 1], r200, maxv)
            except:
                self.gal_vdisp = np.std(
                    data[:, 1][np.where((data[:, 0] < r200)
                                        & (np.abs(data[:, 1]) < maxv))],
                    ddof=1)
            self.vvar = self.gal_vdisp**2

        #initilize arrays
        self.vesc = np.zeros(self.levels.size)
        Ar_final_opt = np.zeros(
            (self.levels.size, ri[np.where((ri < r200) & (ri >= 0))].size))

        #find the escape velocity for all level (kappa) guesses
        for i in range(self.vesc.size):
            self.vesc[i], Ar_final_opt[i] = self.findvesc(
                self.levels[i], ri, vi, Zi, r200)

        #difference equation to search for minimum value
        self.skr = (self.vesc - 4.0 * self.vvar)**2

        try:
            self.level_elem = np.where(
                self.skr == np.min(self.skr[np.isfinite(self.skr)]))[0][0]
            self.level_final = self.levels[self.level_elem]
            self.Ar_finalD = np.zeros(ri.size)
            for k in range(self.Ar_finalD.size):
                self.Ar_finalD[k] = self.findAofr(self.level_final, Zi[k], vi)
                if k != 0:
                    self.Ar_finalD[k] = self.restrict_gradient2(
                        np.abs(self.Ar_finalD[k - 1]),
                        np.abs(self.Ar_finalD[k]), ri[k - 1], ri[k])

        #This exception occurs if self.skr is entirely NAN. A flag should be raised for this in the output table
        except ValueError:
            self.Ar_finalD = np.zeros(ri.size)

        #fit an NFW to the resulting caustic profile.
        self.NFWfit(
            ri[fitting_radii],
            self.Ar_finalD[fitting_radii] * np.sqrt(self.gb[fitting_radii]),
            self.halo_scale_radius, ri, self.gb)
        #self.NFWfit(ri[fitting_radii],self.Ar_finalD[fitting_radii],self.halo_scale_radius,ri,self.gb)

        plotphase = False
        if plotphase == True:
            s = figure()
            ax = s.add_subplot(111)
            ax.plot(data[:, 0], data[:, 1], 'k.')
            for t in range(Ar_final_opt.shape[0]):
                ax.plot(ri[:Ar_final_opt[t].size],
                        Ar_final_opt[t],
                        c='0.4',
                        alpha=0.5)
                ax.plot(ri[:Ar_final_opt[t].size],
                        -Ar_final_opt[t],
                        c='0.4',
                        alpha=0.5)
            ax.plot(ri, self.Ar_finalD, c='blue')
            ax.plot(ri, -self.Ar_finalD, c='blue')
            ax.set_ylim(-3500, 3500)
            s.savefig('/nfs/christoq_ls/giffordw/plotphase.png')
            close()

        ##Output galaxy membership
        kpc2km = 3.09e16
        try:
            fitfunc = lambda x, a, b: np.sqrt(2 * 4 * np.pi * 6.67e-20 * a * (
                b * kpc2km)**2 * np.log(1 + x / b) / (x / b))
            popt, pcov = curve_fit(fitfunc, ri, self.Ar_finalD)
            self.Arfit = fitfunc(ri, popt[0], popt[1])
        except:
            fitfunc = lambda x, a: np.sqrt(2 * 4 * np.pi * 6.67e-20 * a * (
                30.0 * kpc2km)**2 * np.log(1 + x / 30.0) / (x / 30.0))
            popt, pcov = curve_fit(fitfunc, ri, self.Ar_finalD)
            self.Arfit = fitfunc(ri, popt[0])
        self.memflag = np.zeros(data.shape[0])
        #fcomp = interp1d(ri,self.Ar_finalD)
        #        print ri.size, self.vesc_fit.size
        fcomp = interp1d(ri, self.vesc_fit)
        for k in range(self.memflag.size):
            vcompare = fcomp(data[k, 0])
            if np.abs(vcompare) >= np.abs(data[k, 1]):
                self.memflag[k] = 1
Пример #18
0
	def self_stack_clusters(self,HaloID,HaloData,Halo_P,Halo_V,Gal_P,Gal_V,G_Mags,R_Mags,I_Mags,k,j):
		''' Building Ensemble Cluster and Calculating Property Statistics '''
		## Unpack HaloData array 
		M_crit200,R_crit200,Z,SRAD,ESRAD,HVD = HaloData

		## Define Arrays for Building Ensemble and LOS
		# Ensemble Arrays:	[Successive Ensemble Number][Data]
		# Line of Sight Arrays:	[Line Of Sight][Data]
		ens_r,ens_v,ens_gmags,ens_rmags,ens_imags,ens_hvd = [],[],[],[],[],[]
		ens_caumass, ens_caumass_est, ens_causurf, ens_nfwsurf = [], [], [], []
		los_r,los_v,los_gmags,los_rmags,los_imags,los_hvd = [],[],[],[],[],[]
		los_caumass, los_caumass_est, los_causurf, los_nfwsurf = [], [], [], []
		sample_size,pro_pos = [],[]

		## Loop over lines of sight
		for l in range(self.line_num):
			if self.light_cone == True:
				# Configure RA, DEC and Z into cluster-centric radius and velocity
				pass
			else:
				# Line of Sight Calculation for naturally 3D data
				r, v, projected_pos = self.U.line_of_sight(Gal_P[j],Gal_V[j],Halo_P[k],Halo_V[k],k)

			# Limit Data in Phase Space
			r,v,gmags,rmags,imags,samp_size = self.U.limit_gals(r,v,G_Mags[j],R_Mags[j],I_Mags[j],R_crit200[k],HVD[k])

			# Build LOS and Ensemble, with given method of stacking
			en_r,en_v,en_gmags,en_rmags,en_imags,ln_r,ln_v,ln_gmags,ln_rmags,ln_imags = self.S.build_ensemble(r,v,gmags,rmags,imags,HaloData.T[k],l)	

			# Build Ensemble Arrays
			ens_r.extend(en_r)
			ens_v.extend(en_v)
			ens_gmags.extend(en_gmags)
			ens_rmags.extend(en_rmags)
			ens_imags.extend(en_imags)
			
			# Calculate LOS HVD (this is after shiftgapper) if run_los == True
			if self.run_los == True:
				ln_within = np.where(ln_r<R_crit200[k])[0]
				gal_count = len(ln_within)
				if gal_count <= 3:
					'''biweightScale can't take less than 4 elements'''
					# Calculate hvd with numpy std of galaxies within r200 (b/c this is quoted richness)
					ln_hvd = np.std(np.copy(ln_v)[ln_within])
				else:
					# Calculate hvd with astStats biweightScale (see Beers 1990)
					try:
						ln_hvd = astStats.biweightScale(np.copy(ln_v)[ln_within],9.0)
					# Sometimes divide by zero error in biweight function for low gal_num
					except ZeroDivisionError:
						print 'ZeroDivisionError in biweightfunction, line 140 in caustic_class_stack2D'
						print 'ln_v[ln_within]=',ln_v[ln_within]
						ln_hvd = np.std(np.copy(ln_v)[ln_within])
			else:
				ln_hvd = []

			# Run Caustic Technique for LOS mass estimation if run_los == True
			if self.run_los == True:
				ln_caumass,ln_caumass_est,ln_causurf,ln_nfwsurf = self.S.kernel_caustic_masscalc(ln_r,ln_v,HaloData.T[k],np.zeros(2),ln_hvd,k,l)
				print 'j = '+str(j)+', k = '+str(k)+', l = '+str(l)
			else:
				ln_caumass,ln_caumass_est,ln_causurf,ln_nfwsurf = [],[],[],[]
	
			# Append LOS Data Arrays
			los_r.append(ln_r)
			los_v.append(ln_v)
			los_gmags.append(ln_gmags)
			los_rmags.append(ln_rmags)
			los_imags.append(ln_imags)
			los_hvd.append(ln_hvd)
			los_caumass.append(ln_caumass)
			los_caumass_est.append(ln_caumass_est)
			los_causurf.append(ln_causurf)
			los_nfwsurf.append(ln_nfwsurf)
			sample_size.append(samp_size)
			pro_pos.append(projected_pos)

		# Shiftgapper for Ensemble Interloper treatment
		ens_r,ens_v,ens_gmags,ens_rmags,ens_imags = self.C.shiftgapper(np.vstack([ens_r,ens_v,ens_gmags,ens_rmags,ens_imags]).T).T

		# Sort by R_Mag
		sort = np.argsort(ens_rmags)
		ens_r,ens_v,ens_gmags,ens_rmags,ens_imags = ens_r[sort],ens_v[sort],ens_gmags[sort],ens_rmags[sort],ens_imags[sort]

		# Reduce system to gal_num richness within r200
		within = np.where(ens_r <= R_crit200[k])[0]
		end = within[:self.gal_num*self.line_num + 1][-1]
		ens_r = ens_r[:end]
		ens_v = ens_v[:end]
		ens_gmags = ens_gmags[:end]
		ens_rmags = ens_rmags[:end]
		ens_imags = ens_imags[:end]

		# Calculate HVD
		en_hvd = astStats.biweightScale(np.copy(ens_v)[np.where(ens_r<=R_crit200[k])],9.0)

		# Run Caustic Technique! 
		en_caumass,en_caumass_est,en_causurf,en_nfwsurf = self.S.kernel_caustic_masscalc(ens_r,ens_v,HaloData.T[k],np.zeros(2),en_hvd,k)

		# Append Ensemble Data Arrays
		ens_hvd.append(en_hvd)
		ens_caumass.append(en_caumass)
		ens_caumass_est.append(en_caumass_est)

		# Turn into numpy arrays
		ens_r,ens_v,ens_gmags,ens_rmags,ens_imags = np.array(ens_r),np.array(ens_v),np.array(ens_gmags),np.array(ens_rmags),np.array(ens_imags)
		ens_hvd,ens_caumass,ens_caumass_est = np.array(ens_hvd),np.array(ens_caumass),np.array(ens_caumass_est)
		ens_causurf,ens_nfwsurf = np.array(en_causurf),np.array(en_nfwsurf)
		los_r,los_v,los_gmags,los_rmags,los_imags = np.array(los_r),np.array(los_v),np.array(los_gmags),np.array(los_rmags),np.array(los_imags)
		los_hvd,los_caumass,los_caumass_est = np.array(los_hvd),np.array(los_caumass),np.array(los_caumass_est)
		los_causurf,los_nfwsurf = np.array(los_causurf),np.array(los_nfwsurf)
		sample_size,pro_pos = np.array(sample_size),np.array(pro_pos)

		return ens_r,ens_v,ens_gmags,ens_rmags,ens_imags,ens_hvd,ens_caumass,ens_caumass_est,ens_causurf,ens_nfwsurf,los_r,los_v,los_gmags,los_rmags,los_imags,los_hvd,los_caumass,los_caumass_est,los_causurf,los_nfwsurf,self.C.x_range,sample_size,pro_pos