Пример #1
0
    def test_arXiv_1808_04428(self):
        """
        original astroNN paper models
        """
        from astroNN.apogee import visit_spectra, apogee_continuum
        from astropy.io import fits

        # first model
        models_url = [
            "https://github.com/henrysky/astroNN_spectra_paper_figures/trunk/astroNN_0606_run001",
            "https://github.com/henrysky/astroNN_spectra_paper_figures/trunk/astroNN_0617_run001"
        ]

        for model_url in models_url:
            download_args = ["svn", "export", model_url]
            res = subprocess.Popen(download_args, stdout=subprocess.PIPE)
            output, _error = res.communicate()
            if not _error:
                pass
            else:
                raise ConnectionError(
                    f"Error downloading the models {model_url}")

        opened_fits = fits.open(
            visit_spectra(dr=14, location=4405, apogee='2M19060637+4717296'))
        spectrum = opened_fits[1].data
        spectrum_err = opened_fits[2].data
        spectrum_bitmask = opened_fits[3].data

        # using default continuum and bitmask values to continuum normalize
        norm_spec, norm_spec_err = apogee_continuum(spectrum,
                                                    spectrum_err,
                                                    bitmask=spectrum_bitmask,
                                                    dr=14)
        # load neural net
        neuralnet = load_folder('astroNN_0617_run001')

        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(norm_spec)

        # assert temperature and gravity okay
        self.assertEqual(np.all(pred[0, 0:2] > [4700., 2.40]), True)
        self.assertEqual(np.all(pred[0, 0:2] < [4750., 2.47]), True)

        # load neural net
        neuralnet = load_folder('astroNN_0606_run001')

        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(norm_spec)

        # assert temperature and gravity okay
        self.assertEqual(np.all(pred[0, 0:2] > [4700., 2.40]), True)
        self.assertEqual(np.all(pred[0, 0:2] < [4750., 2.47]), True)
Пример #2
0
 def test_apogee_visit_download(self):
     visit_spectra(dr=13, location=4405, apogee='2M19060637+4717296')
     visit_spectra(dr=14, location=4405, apogee='2M19060637+4717296')
     self.assertEqual(
         visit_spectra(dr=13, location=4406, apogee='2M19060637+4717296'),
         False)
     self.assertEqual(
         visit_spectra(dr=14, location=4406, apogee='2M19060637+4717296'),
         False)
     self.assertRaises(ValueError,
                       visit_spectra,
                       dr=1,
                       location=4406,
                       apogee='2M19060637+4717296')
Пример #3
0
 def test_apogee_visit_download(self):
     """
     Test APOGEE visits spectra downloading function, assert functions can deal with missing files
     """
     # make sure the download works correctly
     visit_spectra(dr=13, location=4405, apogee='2M19060637+4717296')
     visit_spectra(dr=14, location=4405, apogee='2M19060637+4717296')
     # assert False is returning if file not found
     self.assertEqual(
         visit_spectra(dr=13, location=4406, apogee='2M19060637+4717296'),
         False)
     self.assertEqual(
         visit_spectra(dr=14, location=4406, apogee='2M19060637+4717296'),
         False)
     # assert error if DR not supported
     self.assertRaises(ValueError,
                       visit_spectra,
                       dr=1,
                       location=4406,
                       apogee='2M19060637+4717296')
Пример #4
0
    def create_data(self,
                    version=1,
                    max_number_of_stars=float("inf"),
                    use_steps=False):

        if os.path.exists('{}stars{}.pickle'.format(self._PICKLE_DIR,
                                                    version)):
            pickle_out = open(
                "{}stars{}.pickle".format(self._PICKLE_DIR, version), 'rb')
            self._star_dict = pickle.load(pickle_out)
            return True

        self._star_dict = {
            'KIC': [],
            'RA': [],
            'DEC': [],
            'Dnu': [],
            'PS': [],
            'e_PS': [],
            'q': [],
            'M': [],
            'spectra': [],
            'error_spectra': [],
            'T_eff': [],
            'logg': [],
            'RC': [],
            'status': [],
            'M_H': [],
            'C': [],
            'N': [],
            'O': [],
            'Na': [],
            'Mg': [],
            'Al': [],
            'Si': [],
            'P': [],
            'S': [],
            'K': [],
            'Ca': [],
            'Ti': [],
            'V': [],
            'Mn': [],
            'Fe': [],
            'Ni': [],
            'Cr': [],
            'Co': [],
            'Cl': []
        }

        # First create table of Kepler stars with PS and Δv with their RA, DEC (creates table1.dat)
        self._populate_kepler_with_rc_dec()

        # Loading in APOGEE star data (RA, DEC)
        local_path_to_file = allstar(dr=14)
        apogee_data = fits.open(local_path_to_file)
        apogee_ra = apogee_data[1].data['RA']
        apogee_de = apogee_data[1].data['DEC']

        # RA, DEC from KIC table
        kic_table = Table.read("tables/KIC_A87/table1.dat", format="ascii")
        kic_ra = np.array(kic_table['RA'])
        kic_de = np.array(kic_table['DE'])

        # Indices overlap between KIC and APOGEE
        idx_kic, idx_apogee, sep = xmatch(kic_ra,
                                          apogee_ra,
                                          colRA1=kic_ra,
                                          colDec1=kic_de,
                                          colRA2=apogee_ra,
                                          colDec2=apogee_de)

        # Building spectra data for KIC from APOGEE overlaps
        for i in range(0, len(idx_apogee)):
            index_in_apogee = idx_apogee[i]
            index_in_kepler = idx_kic[i]

            if version == 1 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0 and
                    apogee_data[1].data['ASPCAPFLAG'][index_in_apogee] == 0):
                continue

            # Version 2 - Subject to the following constraints
            # Flag checking, condition is the same as Hawkins et al. 2017, STARFLAG and ASPCAP bitwise OR is 0
            # KIC checking, uncertainty in PS should be less than 10s
            if version == 2 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and apogee_data[1].data['ASPCAPFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10):
                continue

            # Version 3 - Subject to the following constraints
            # Flag checking, condition is the same as Hawkins et al. 2017, STARFLAG and ASPCAP bitwise OR is 0
            # KIC checking, uncertainty in PS should be less than 10s
            if version == 3 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and apogee_data[1].data['ASPCAPFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10
                    and apogee_data[1].data['SNR'][index_in_apogee] >= 200):
                continue

            # Version 5 - DR13 data subject to same connstraints as Hawkings
            if version == 5 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and apogee_data[1].data['ASPCAPFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10):
                continue

            # Version 6 - DR13 data subject to same connstraints as Hawkings - normalization with bitmask as DR13
            if version == 6 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and apogee_data[1].data['ASPCAPFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10
                    and apogee_data[1].data['NVISITS'][index_in_apogee] >= 1):
                continue

            # Version 7 - DR13 data subject to same constraints as Hawkings - no bit mask as DR13
            if version == 7 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10
                    and apogee_data[1].data['NVISITS'][index_in_apogee] >= 1):
                continue

            # Version 8 - DR13 data subject to same constraints as Hawkings
            if version == 8 and not (
                    apogee_data[1].data['STARFLAG'][index_in_apogee] == 0
                    and kic_table['e_DPi1'][index_in_kepler] < 10
                    and apogee_data[1].data['NVISITS'][index_in_apogee] >= 1):
                continue

            a_apogee_id = apogee_data[1].data['APOGEE_ID'][index_in_apogee]
            a_location_id = apogee_data[1].data['LOCATION_ID'][index_in_apogee]

            local_path_to_file_for_star = None
            if version == 6 or version == 7 or version == 8:
                local_path_to_file_for_star = visit_spectra(
                    dr=14, location=a_location_id, apogee=a_apogee_id)
            elif version == 4 or version == 5:
                local_path_to_file_for_star = combined_spectra(
                    dr=13, location=a_location_id, apogee=a_apogee_id)
            else:
                local_path_to_file_for_star = combined_spectra(
                    dr=14, location=a_location_id, apogee=a_apogee_id)

            if (local_path_to_file_for_star):
                # Filter out the dr=14 gaps, value to be appended to the array
                spectra_no_gap = None
                error_spectra = None
                if version in (6, 7, 8):
                    # Read from visit spectra of the star
                    spectra_data = fits.open(local_path_to_file_for_star)
                    spectra, mask_spectra = None, None

                    # Best fit spectra data - use for spectra data
                    if apogee_data[1].data['NVISITS'][index_in_apogee] == 1:
                        spectra = spectra_data[1].data
                        error_spectra = spectra_data[2].data
                        mask_spectra = spectra_data[3].data
                    elif apogee_data[1].data['NVISITS'][index_in_apogee] > 1:
                        spectra = spectra_data[1].data[1]
                        error_spectra = spectra_data[2].data[1]
                        mask_spectra = spectra_data[3].data[1]

                    if version == 6:
                        norm_spec, norm_spec_err = apogee_continuum(
                            spectra,
                            error_spectra,
                            cont_mask=None,
                            deg=2,
                            dr=13,
                            bitmask=mask_spectra,
                            target_bit=None)
                        spectra_no_gap = norm_spec
                        error_spectra = norm_spec_err
                    elif version == 7:
                        norm_spec, norm_spec_err = apogee_continuum(
                            spectra,
                            error_spectra,
                            cont_mask=None,
                            deg=2,
                            dr=13,
                            bitmask=None,
                            target_bit=None)
                        spectra_no_gap = norm_spec
                        error_spectra = norm_spec_err
                    elif version == 8:
                        # Bit mask value is now 1
                        norm_spec, norm_spec_err = apogee_continuum(
                            spectra,
                            error_spectra,
                            cont_mask=None,
                            deg=2,
                            dr=13,
                            bitmask=mask_spectra,
                            target_bit=None,
                            mask_value=1)
                        spectra_no_gap = norm_spec
                        error_spectra = norm_spec_err
                    del mask_spectra

                elif version == 4 or version == 5:
                    spectra_data = fits.open(local_path_to_file_for_star)

                    # Best fit spectra data - use for spectra data
                    spectra = spectra_data[3].data
                    spectra_no_gap = gap_delete(spectra, dr=13)
                else:
                    spectra_data = fits.open(local_path_to_file_for_star)

                    # Best fit spectra data - use for spectra data
                    spectra = spectra_data[3].data

                    spectra_no_gap = gap_delete(spectra, dr=14)

                spectra_no_gap = spectra_no_gap.flatten()

                # APOGEE data
                self._star_dict['T_eff'].append(
                    apogee_data[1].data['Teff'][index_in_apogee].copy())
                self._star_dict['logg'].append(
                    apogee_data[1].data['logg'][index_in_apogee].copy())

                # Metals/H
                self._star_dict['M_H'].append(
                    apogee_data[1].data['M_H'][index_in_apogee])
                self._star_dict['C'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][0])
                self._star_dict['N'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][2])
                self._star_dict['O'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][3])
                self._star_dict['Na'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][4])
                self._star_dict['Mg'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][5])
                self._star_dict['Al'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][6])
                self._star_dict['Si'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][7])
                self._star_dict['P'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][8])
                self._star_dict['S'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][9])
                self._star_dict['K'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][10])
                self._star_dict['Ca'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][11])
                self._star_dict['Ti'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][12])
                self._star_dict['V'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][14])
                self._star_dict['Mn'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][16])
                self._star_dict['Fe'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][17])
                self._star_dict['Ni'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][19])
                self._star_dict['Cr'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][15])
                self._star_dict['Co'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][18])
                self._star_dict['Cl'].append(
                    apogee_data[1].data['X_H'][index_in_apogee][1])

                # KIC data
                self._star_dict['KIC'].append(
                    kic_table['KIC'][index_in_kepler])
                self._star_dict['RA'].append(kic_table['RA'][index_in_kepler])
                self._star_dict['DEC'].append(kic_table['DE'][index_in_kepler])
                self._star_dict['Dnu'].append(
                    kic_table['Dnu'][index_in_kepler])
                self._star_dict['PS'].append(
                    kic_table['DPi1'][index_in_kepler])
                self._star_dict['e_PS'].append(
                    kic_table['e_DPi1'][index_in_kepler])
                self._star_dict['q'].append(kic_table['q'][index_in_kepler])
                self._star_dict['M'].append(kic_table['M'][index_in_kepler])
                self._star_dict['status'].append(
                    kic_table['Status'][index_in_kepler])
                self._star_dict['RC'].append(
                    self.is_red_clump(kic_table['DPi1'][index_in_kepler],
                                      kic_table['Dnu'][index_in_kepler]))

                # Gap delete doesn't return row vector, need to manually reshape
                self._star_dict['spectra'].append(spectra_no_gap)

                if version in (6, 7, 8):
                    self._star_dict['error_spectra'].append(
                        error_spectra.flatten())
                    del error_spectra

                # Close file handler
                del spectra_data
                del spectra

            # Check max condition
            if i > max_number_of_stars - 1:
                break

        # Convert to numpy arrays
        self._star_dict['KIC'] = np.array(self._star_dict['KIC'])
        self._star_dict['RA'] = np.array(self._star_dict['RA'])
        self._star_dict['DEC'] = np.array(self._star_dict['DEC'])
        self._star_dict['Dnu'] = np.array(self._star_dict['Dnu'])
        self._star_dict['PS'] = np.array(self._star_dict['PS'])
        self._star_dict['e_PS'] = np.array(self._star_dict['e_PS'])
        self._star_dict['spectra'] = np.array(self._star_dict['spectra'])
        self._star_dict['logg'] = np.array(self._star_dict['logg'])
        self._star_dict['T_eff'] = np.array(self._star_dict['T_eff'])
        self._star_dict['RC'] = np.array(self._star_dict['RC'])
        self._star_dict['status'] = np.array(self._star_dict['status'])
        self._star_dict['M'] = np.array(self._star_dict['M'])
        self._star_dict['M_H'] = np.array(self._star_dict['M_H'])
        self._star_dict['C'] = np.array(self._star_dict['C'])
        self._star_dict['N'] = np.array(self._star_dict['N'])
        self._star_dict['O'] = np.array(self._star_dict['O'])
        self._star_dict['Na'] = np.array(self._star_dict['Na'])
        self._star_dict['Mg'] = np.array(self._star_dict['Mg'])
        self._star_dict['Al'] = np.array(self._star_dict['Al'])
        self._star_dict['Si'] = np.array(self._star_dict['Si'])
        self._star_dict['P'] = np.array(self._star_dict['P'])
        self._star_dict['S'] = np.array(self._star_dict['S'])
        self._star_dict['K'] = np.array(self._star_dict['K'])
        self._star_dict['Ca'] = np.array(self._star_dict['Ca'])
        self._star_dict['Ti'] = np.array(self._star_dict['Ti'])
        self._star_dict['V'] = np.array(self._star_dict['V'])
        self._star_dict['Mn'] = np.array(self._star_dict['Mn'])
        self._star_dict['Fe'] = np.array(self._star_dict['Fe'])
        self._star_dict['Ni'] = np.array(self._star_dict['Ni'])
        self._star_dict['Cl'] = np.array(self._star_dict['Cl'])
        self._star_dict['Cr'] = np.array(self._star_dict['Cr'])
        self._star_dict['Co'] = np.array(self._star_dict['Co'])
        self._star_dict['q'] = np.array(self._star_dict['q'])

        if version == 6:
            self._star_dict['error_spectra'] = np.array(
                self._star_dict['error_spectra'])

        # Pickle for caching
        pickle_out = open("{}stars{}.pickle".format(self._PICKLE_DIR, version),
                          'wb')
        pickle.dump(self._star_dict, pickle_out)
        pickle_out.close()

        return True
Пример #5
0
	def grab_sample(self, N = 32, dr=14, spectra_format='visit', bitmask_value =1, save_sample=True):
		self.create_data()

		stars = {
			'APSTAR_ID' : [],

			# Spectra of the star
			'spectra'   : [],

			# Stellar features
			'Teff'      : [],
			'logg'      : [],

			# Metals
			'M_H'       : [],
			'C'         : [],
			'N'         : [],
			'O'         : [],
			'Na'        : [],
			'Mg'        : [],
			'Al'        : [],
			'Si'        : [],
			'P'         : [],
			'S'         : [],
			'K'         : [],
			'Ca'        : [],
			'Ti'        : [],
			'V'         : [],
			'Mn'        : [],
			'Fe'        : [],
			'Ni'        : [],
		}

		# Get random indices
		idx = np.random.choice(len(self.apogee_data[1].data['logg']), len(self.apogee_data[1].data['logg']))

		for i in idx:
			# Break condition
			if len(stars['logg']) >= N:
				break

			# For when the spectra_format is visit, we require more than NVISIT >= 1
			if spectra_format == 'visit' and (self.apogee_data[1].data['NVISITS'][i] < 1):
				continue

			# Enforce we have high quality spectra from dr14
			if not(self.apogee_data[1].data['STARFLAG'][i] == 0 and self.apogee_data[1].data['ASPCAPFLAG'][i] == 0 and self.apogee_data[1].data['SNR'][i] < 200):

				# Stellar features
				logg = self.apogee_data[1].data['logg'][i]
				Teff = self.apogee_data[1].data['Teff'][i]

				# Metals/H
				M_H  = self.apogee_data[1].data['M_H'][i]

				# Metals
				C    = self.apogee_data[1].data['X_H'][i][0]
				N_c  = self.apogee_data[1].data['X_H'][i][2]
				O    = self.apogee_data[1].data['X_H'][i][3]
				Na   = self.apogee_data[1].data['X_H'][i][4]
				Mg   = self.apogee_data[1].data['X_H'][i][5]
				Al   = self.apogee_data[1].data['X_H'][i][6]
				Si   = self.apogee_data[1].data['X_H'][i][7]
				P    = self.apogee_data[1].data['X_H'][i][8]
				S    = self.apogee_data[1].data['X_H'][i][9]
				K    = self.apogee_data[1].data['X_H'][i][10]
				Ca   = self.apogee_data[1].data['X_H'][i][11]
				Ti   = self.apogee_data[1].data['X_H'][i][12]
				V    = self.apogee_data[1].data['X_H'][i][14]
				Mn   = self.apogee_data[1].data['X_H'][i][16]
				Fe   = self.apogee_data[1].data['X_H'][i][17]
				Ni   = self.apogee_data[1].data['X_H'][i][19]

				# Make sure all of them are not falled
				if all([False if i == -9999 else True for i in [logg, Teff, M_H, C, N_c, O, Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Mn, Fe, Ni]]):
					# Get spectra data
					apogee_id, location_id = self.apogee_data[1].data['APOGEE_ID'][i], self.apogee_data[1].data['LOCATION_ID'][i]
					star_spectra = None

					# Populating the appropiate star_spectra variable with stellar spectra
					if spectra_format == 'combined':
						local_path_to_file_for_star = combined_spectra(dr=dr, location=location_id, apogee=apogee_id)
						if local_path_to_file_for_star:
							spectra_data = fits.open(local_path_to_file_for_star)
							star_spectra = spectra_data[3].data.copy()
							star_spectra = gap_delete(spectra, dr=dr)
							star_spectra = star_spectra.flatten()
							# Close file handlers
							del spectra_data
					elif spectra_format == 'visit':
						local_path_to_file_for_star = visit_spectra(dr=dr, location=location_id, apogee=apogee_id)
						if local_path_to_file_for_star:
							spectra_data = fits.open(local_path_to_file_for_star)
							spectra, error_spectra, mask_spectra = None, None, None

							# NVISITS is 1, 1D array
							if self.apogee_data[1].data['NVISITS'][i] == 1:
								spectra = spectra_data[1].data
								error_spectra = spectra_data[2].data
								mask_spectra = spectra_data[3].data
							elif self.apogee_data[1].data['NVISITS'][i] > 1:
								spectra = spectra_data[1].data[1]
								error_spectra = spectra_data[2].data[1]
								mask_spectra = spectra_data[3].data[1]

							# Mask if the mask value is present
							if bitmask_value is not None:
								norm_spec, norm_spec_err = apogee_continuum(spectra, error_spectra, cont_mask=None, deg=2, bitmask=mask_spectra, target_bit=None, mask_value=bitmask_value)
								star_spectra = norm_spec.flatten()
							else:
								norm_spec, norm_spec_err = apogee_continuum(spectra, error_spectra, cont_mask=None, deg=2, bitmask=None, target_bit=None, mask_value=None)
								star_spectra = norm_spec.flatten()
							# Close file handlers
							del spectra_data
					else:
						raise ValueError("spectra_format must either be combined|visit")

					# Adding the star data into the dict
					if star_spectra is not None:
						stars['spectra'].append(star_spectra)
						stars['logg'].append(logg)
						stars['Teff'].append(Teff)
						stars['M_H'].append(M_H)
						stars['C'].append(C)
						stars['N'].append(N_c)
						stars['O'].append(O)
						stars['Na'].append(Na)
						stars['Mg'].append(Mg)
						stars['Al'].append(Al)
						stars['Si'].append(Si)
						stars['P'].append(P)
						stars['S'].append(S)
						stars['K'].append(K)
						stars['Ca'].append(Ca)
						stars['Ti'].append(Ti)
						stars['V'].append(V)
						stars['Mn'].append(Mn)
						stars['Fe'].append(Fe)
						stars['Ni'].append(Ni)

		# Convert to np style arrays
		for key in stars:
			stars[key] = np.array(stars[key])
		# stars['logg']    = np.array(stars['logg'])
		# stars['Teff']    = np.array(stars['Teff'])
		# stars['M_H']     = np.array(stars['M_H'])
		# stars['C']       = np.array(stars['C'])
		# stars['N']       = np.array(stars['N'])
		# stars['O']       = np.array(stars['O'])
		# stars['Na']      = np.array(stars['Na'])
		# stars['Mg']      = np.array(stars['Mg'])
		# stars['Al']      = np.array(stars['Al'])
		# stars['Si']      = np.array(stars['Si'])
		# stars['P']       = np.array(stars['P'])
		# stars['S']       = np.array(stars['S'])
		# stars['K']       = np.array(stars['K'])
		# stars['Ca']      = np.array(stars['Ca'])
		# stars['Ti']      = np.array(stars['Ti'])
		# stars['V']       = np.array(stars['V'])
		# stars['Mn']      = np.array(stars['Mn'])
		# stars['Fe']      = np.array(stars['Fe'])
		# stars['Ni']      = np.array(stars['Ni'])
		# stars['spectra'] = np.array(stars['spectra'])

		# Save sample if asked to
		if save_sample:
			pickle_out = open("{}apogee_sample_{}_stars.pickle".format(self._PICKLE_DIR, N), 'wb')
			pickle.dump(stars, pickle_out)
			pickle_out.close()

		return stars
Пример #6
0
    def compile(self):
        h5name_check(self.filename)

        hdulist = self.load_allstar()
        indices = self.filter_apogeeid_list(hdulist)

        info = chips_pix_info(dr=self.apogee_dr)
        total_pix = (info[1] - info[0]) + (info[3] - info[2]) + (info[5] -
                                                                 info[4])
        default_length = 900000

        spec = np.zeros((default_length, total_pix), dtype=np.float32)
        spec_err = np.zeros((default_length, total_pix), dtype=np.float32)
        RA = np.zeros(default_length, dtype=np.float32)
        DEC = np.zeros(default_length, dtype=np.float32)
        SNR = np.zeros(default_length, dtype=np.float32)
        individual_flag = np.zeros(default_length, dtype=np.float32)
        Kmag = np.zeros(default_length, dtype=np.float32)
        AK_TARG = np.zeros(default_length, dtype=np.float32)

        # Data array
        teff = np.zeros(default_length, dtype=np.float32)
        logg = np.zeros(default_length, dtype=np.float32)
        MH = np.zeros(default_length, dtype=np.float32)
        alpha_M = np.zeros(default_length, dtype=np.float32)
        C = np.zeros(default_length, dtype=np.float32)
        C1 = np.zeros(default_length, dtype=np.float32)
        N = np.zeros(default_length, dtype=np.float32)
        O = np.zeros(default_length, dtype=np.float32)
        Na = np.zeros(default_length, dtype=np.float32)
        Mg = np.zeros(default_length, dtype=np.float32)
        Al = np.zeros(default_length, dtype=np.float32)
        Si = np.zeros(default_length, dtype=np.float32)
        P = np.zeros(default_length, dtype=np.float32)
        S = np.zeros(default_length, dtype=np.float32)
        K = np.zeros(default_length, dtype=np.float32)
        Ca = np.zeros(default_length, dtype=np.float32)
        Ti = np.zeros(default_length, dtype=np.float32)
        Ti2 = np.zeros(default_length, dtype=np.float32)
        V = np.zeros(default_length, dtype=np.float32)
        Cr = np.zeros(default_length, dtype=np.float32)
        Mn = np.zeros(default_length, dtype=np.float32)
        Fe = np.zeros(default_length, dtype=np.float32)
        Co = np.zeros(default_length, dtype=np.float32)
        Ni = np.zeros(default_length, dtype=np.float32)
        Cu = np.zeros(default_length, dtype=np.float32)
        Ge = np.zeros(default_length, dtype=np.float32)
        Ce = np.zeros(default_length, dtype=np.float32)
        Rb = np.zeros(default_length, dtype=np.float32)
        Y = np.zeros(default_length, dtype=np.float32)
        Nd = np.zeros(default_length, dtype=np.float32)
        parallax = np.zeros(default_length, dtype=np.float32)
        fakemag = np.zeros(default_length, dtype=np.float32)

        # Error array
        teff_err = np.zeros(default_length, dtype=np.float32)
        logg_err = np.zeros(default_length, dtype=np.float32)
        MH_err = np.zeros(default_length, dtype=np.float32)
        alpha_M_err = np.zeros(default_length, dtype=np.float32)
        C_err = np.zeros(default_length, dtype=np.float32)
        C1_err = np.zeros(default_length, dtype=np.float32)
        N_err = np.zeros(default_length, dtype=np.float32)
        O_err = np.zeros(default_length, dtype=np.float32)
        Na_err = np.zeros(default_length, dtype=np.float32)
        Mg_err = np.zeros(default_length, dtype=np.float32)
        Al_err = np.zeros(default_length, dtype=np.float32)
        Si_err = np.zeros(default_length, dtype=np.float32)
        P_err = np.zeros(default_length, dtype=np.float32)
        S_err = np.zeros(default_length, dtype=np.float32)
        K_err = np.zeros(default_length, dtype=np.float32)
        Ca_err = np.zeros(default_length, dtype=np.float32)
        Ti_err = np.zeros(default_length, dtype=np.float32)
        Ti2_err = np.zeros(default_length, dtype=np.float32)
        V_err = np.zeros(default_length, dtype=np.float32)
        Cr_err = np.zeros(default_length, dtype=np.float32)
        Mn_err = np.zeros(default_length, dtype=np.float32)
        Fe_err = np.zeros(default_length, dtype=np.float32)
        Co_err = np.zeros(default_length, dtype=np.float32)
        Ni_err = np.zeros(default_length, dtype=np.float32)
        Cu_err = np.zeros(default_length, dtype=np.float32)
        Ge_err = np.zeros(default_length, dtype=np.float32)
        Ce_err = np.zeros(default_length, dtype=np.float32)
        Rb_err = np.zeros(default_length, dtype=np.float32)
        Y_err = np.zeros(default_length, dtype=np.float32)
        Nd_err = np.zeros(default_length, dtype=np.float32)
        parallax_err = np.zeros(default_length, dtype=np.float32)
        fakemag_err = np.zeros(default_length, dtype=np.float32)

        array_counter = 0

        start_time = time.time()

        # provide a cont mask so no need to read every loop
        if self.cont_mask is None:
            maskpath = os.path.join(astroNN.data.datapath(),
                                    f'dr{self.apogee_dr}_contmask.npy')
            self.cont_mask = np.load(maskpath)

        for counter, index in enumerate(indices):
            nvisits = 1
            apogee_id = hdulist[1].data['APOGEE_ID'][index]
            location_id = hdulist[1].data['LOCATION_ID'][index]
            if counter % 100 == 0:
                print(
                    f'Completed {counter + 1} of {indices.shape[0]}, {(time.time() - start_time):.{2}f}s elapsed'
                )
            if not self.continuum:
                path = combined_spectra(dr=self.apogee_dr,
                                        location=location_id,
                                        apogee=apogee_id,
                                        verbose=0)
                if path is False:
                    # if path is not found then we should skip
                    continue
                combined_file = fits.open(path)
                _spec = combined_file[
                    1].data  # Pseudo-continuum normalized flux
                _spec_err = combined_file[2].data  # Spectrum error array
                _spec = gap_delete(
                    _spec, dr=self.apogee_dr)  # Delete the gap between sensors
                _spec_err = gap_delete(_spec_err, dr=self.apogee_dr)
                inSNR = combined_file[0].header['SNR']
                combined_file.close()
            else:
                path = visit_spectra(dr=self.apogee_dr,
                                     location=location_id,
                                     apogee=apogee_id,
                                     verbose=0)
                if path is False:
                    # if path is not found then we should skip
                    continue
                apstar_file = fits.open(path)
                nvisits = apstar_file[0].header['NVISITS']
                if nvisits == 1:
                    _spec = apstar_file[1].data
                    _spec_err = apstar_file[2].data
                    _spec_mask = apstar_file[3].data
                    inSNR = np.ones(nvisits)
                    inSNR[0] = apstar_file[0].header['SNR']
                else:
                    _spec = apstar_file[1].data[1:]
                    _spec_err = apstar_file[2].data[1:]
                    _spec_mask = apstar_file[3].data[1:]
                    inSNR = np.ones(nvisits + 1)
                    inSNR[0] = apstar_file[0].header['SNR']
                    for i in range(nvisits):
                        inSNR[i + 1] = apstar_file[0].header[f'SNRVIS{i + 1}']

                    # Deal with spectra thats all zeros flux
                    ii = 0
                    while ii < _spec.shape[0]:
                        if np.count_nonzero(_spec[ii]) == 0:
                            nvisits -= 1
                            _spec = np.delete(_spec, ii, 0)
                            _spec_err = np.delete(_spec_err, ii, 0)
                            _spec_mask = np.delete(_spec_mask, ii, 0)
                            inSNR = np.delete(inSNR, ii, 0)
                            ii -= 1
                        ii += 1

                    # Just for the sake of program to work, the real nvisits still nvisits
                    nvisits += 1

                # Normalize spectra and Set some bitmask to 0
                _spec, _spec_err = self.apstar_normalization(
                    _spec, _spec_err, _spec_mask)
                apstar_file.close()

            if nvisits == 1:
                individual_flag[array_counter:array_counter + nvisits] = 0
            else:
                individual_flag[array_counter:array_counter + 1] = 0
                individual_flag[array_counter + 1:array_counter + nvisits] = 1
            spec[array_counter:array_counter + nvisits, :] = _spec
            spec_err[array_counter:array_counter + nvisits, :] = _spec_err
            SNR[array_counter:array_counter + nvisits] = inSNR
            RA[array_counter:array_counter + nvisits] = np.tile(
                hdulist[1].data['RA'][index], nvisits)
            DEC[array_counter:array_counter + nvisits] = np.tile(
                hdulist[1].data['DEC'][index], nvisits)
            parallax[array_counter:array_counter + nvisits] = np.tile(
                -9999, nvisits)
            parallax_err[array_counter:array_counter + nvisits] = np.tile(
                -9999, nvisits)
            fakemag[array_counter:array_counter + nvisits] = np.tile(
                -9999, nvisits)
            fakemag_err[array_counter:array_counter + nvisits] = np.tile(
                -9999, nvisits)
            Kmag[array_counter:array_counter + nvisits] = np.tile(
                hdulist[1].data['K'][index], nvisits)
            AK_TARG[array_counter:array_counter + nvisits] = np.tile(
                hdulist[1].data['AK_TARG'][index], nvisits)

            if self.spectra_only is not True:
                teff[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['PARAM'][index, 0], nvisits)
                logg[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['PARAM'][index, 1], nvisits)
                MH[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['PARAM'][index, 3], nvisits)
                alpha_M[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['PARAM'][index, 6], nvisits)
                C[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 0], nvisits)
                C1[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 1], nvisits)
                N[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 2], nvisits)
                O[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 3], nvisits)
                Na[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 4], nvisits)
                Mg[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 5], nvisits)
                Al[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 6], nvisits)
                Si[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 7], nvisits)
                P[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 8], nvisits)
                S[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 9], nvisits)
                K[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 10], nvisits)
                Ca[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 11], nvisits)
                Ti[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 12], nvisits)
                Ti2[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 13], nvisits)
                V[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 14], nvisits)
                Cr[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 15], nvisits)
                Mn[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 16], nvisits)
                Fe[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 17], nvisits)
                Co[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 18], nvisits)
                Ni[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 19], nvisits)
                Cu[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 20], nvisits)
                Ge[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 21], nvisits)
                Ce[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 22], nvisits)
                Rb[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 23], nvisits)
                Y[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 24], nvisits)
                Nd[array_counter:array_counter + nvisits] = np.tile(
                    hdulist[1].data['X_H'][index, 25], nvisits)

                if self.use_err is True:
                    teff_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['TEFF_ERR'][index], nvisits)
                    logg_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['LOGG_ERR'][index], nvisits)
                    MH_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['M_H_ERR'][index], nvisits)
                    alpha_M_err[array_counter:array_counter +
                                nvisits] = np.tile(
                                    hdulist[1].data['ALPHA_M_ERR'][index],
                                    nvisits)
                    C_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 0], nvisits)
                    C1_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 1], nvisits)
                    N_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 2], nvisits)
                    O_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 3], nvisits)
                    Na_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 4], nvisits)
                    Mg_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 5], nvisits)
                    Al_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 6], nvisits)
                    Si_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 7], nvisits)
                    P_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 8], nvisits)
                    S_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 9], nvisits)
                    K_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 10], nvisits)
                    Ca_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 11], nvisits)
                    Ti_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 12], nvisits)
                    Ti2_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 13], nvisits)
                    V_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 14], nvisits)
                    Cr_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 15], nvisits)
                    Mn_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 16], nvisits)
                    Fe_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 17], nvisits)
                    Co_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 18], nvisits)
                    Ni_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 19], nvisits)
                    Cu_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 20], nvisits)
                    Ge_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 21], nvisits)
                    Ce_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 22], nvisits)
                    Rb_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 23], nvisits)
                    Y_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 24], nvisits)
                    Nd_err[array_counter:array_counter + nvisits] = np.tile(
                        hdulist[1].data['X_H_ERR'][index, 25], nvisits)
            array_counter += nvisits

        spec = spec[0:array_counter]
        spec_err = spec_err[0:array_counter]
        individual_flag = individual_flag[0:array_counter]
        RA = RA[0:array_counter]
        DEC = DEC[0:array_counter]
        SNR = SNR[0:array_counter]

        if self.spectra_only is not True:
            teff = teff[0:array_counter]
            logg = logg[0:array_counter]
            Kmag = Kmag[0:array_counter]
            AK_TARG = AK_TARG[0:array_counter]
            MH = MH[0:array_counter]
            alpha_M = alpha_M[0:array_counter]
            C = C[0:array_counter]
            C1 = C1[0:array_counter]
            N = N[0:array_counter]
            O = O[0:array_counter]
            Na = Na[0:array_counter]
            Mg = Mg[0:array_counter]
            Al = Al[0:array_counter]
            Si = Si[0:array_counter]
            P = P[0:array_counter]
            S = S[0:array_counter]
            K = K[0:array_counter]
            Ca = Ca[0:array_counter]
            Ti = Ti[0:array_counter]
            Ti2 = Ti2[0:array_counter]
            V = V[0:array_counter]
            Cr = Cr[0:array_counter]
            Mn = Mn[0:array_counter]
            Fe = Fe[0:array_counter]
            Co = Co[0:array_counter]
            Ni = Ni[0:array_counter]
            Cu = Cu[0:array_counter]
            Ge = Ge[0:array_counter]
            Ce = Ce[0:array_counter]
            Rb = Rb[0:array_counter]
            Y = Y[0:array_counter]
            Nd = Nd[0:array_counter]
            parallax = parallax[0:array_counter]
            fakemag = fakemag[0:array_counter]

            teff_err = teff_err[0:array_counter]
            logg_err = logg_err[0:array_counter]
            MH_err = MH_err[0:array_counter]
            alpha_M_err = alpha_M_err[0:array_counter]
            C_err = C_err[0:array_counter]
            C1_err = C1_err[0:array_counter]
            N_err = N_err[0:array_counter]
            O_err = O_err[0:array_counter]
            Na_err = Na_err[0:array_counter]
            Mg_err = Mg_err[0:array_counter]
            Al_err = Al_err[0:array_counter]
            Si_err = Si_err[0:array_counter]
            P_err = P_err[0:array_counter]
            S_err = S_err[0:array_counter]
            K_err = K_err[0:array_counter]
            Ca_err = Ca_err[0:array_counter]
            Ti_err = Ti_err[0:array_counter]
            Ti2_err = Ti2_err[0:array_counter]
            V_err = V_err[0:array_counter]
            Cr_err = Cr_err[0:array_counter]
            Mn_err = Mn_err[0:array_counter]
            Fe_err = Fe_err[0:array_counter]
            Co_err = Co_err[0:array_counter]
            Ni_err = Ni_err[0:array_counter]
            Cu_err = Cu_err[0:array_counter]
            Ge_err = Ge_err[0:array_counter]
            Ce_err = Ce_err[0:array_counter]
            Rb_err = Rb_err[0:array_counter]
            Y_err = Y_err[0:array_counter]
            Nd_err = Nd_err[0:array_counter]
            parallax_err = parallax_err[0:array_counter]
            fakemag_err = fakemag_err[0:array_counter]

            if self.use_esa_gaia is True:
                gaia_ra, gaia_dec, gaia_parallax, gaia_err = gaiadr2_parallax(
                    cuts=True, keepdims=False)
                m1, m2, sep = xmatch(RA,
                                     gaia_ra,
                                     maxdist=2,
                                     colRA1=RA,
                                     colDec1=DEC,
                                     colRA2=gaia_ra,
                                     colDec2=gaia_dec,
                                     swap=False)
                parallax[m1] = gaia_parallax[m2]
                parallax_err[m1] = gaia_err[m2]
                fakemag[m1], fakemag_err[m1] = mag_to_fakemag(
                    extinction_correction(Kmag[m1], AK_TARG[m1]), parallax[m1],
                    parallax_err[m1])
            elif self.use_anderson_2017 is True:
                gaia_ra, gaia_dec, gaia_parallax, gaia_err = anderson_2017_parallax(
                )
                m1, m2, sep = xmatch(RA,
                                     gaia_ra,
                                     maxdist=2,
                                     colRA1=RA,
                                     colDec1=DEC,
                                     epoch1=2000.,
                                     colRA2=gaia_ra,
                                     colDec2=gaia_dec,
                                     epoch2=2000.,
                                     swap=False)
                parallax[m1] = gaia_parallax[m2]
                parallax_err[m1] = gaia_err[m2]
                fakemag[m1], fakemag_err[m1] = mag_to_fakemag(
                    extinction_correction(Kmag[m1], AK_TARG[m1]), parallax[m1],
                    parallax_err[m1])

        print(f'Creating {self.filename}.h5')
        h5f = h5py.File(f'{self.filename}.h5', 'w')
        h5f.create_dataset('spectra', data=spec)
        h5f.create_dataset('spectra_err', data=spec_err)
        h5f.create_dataset('in_flag', data=individual_flag)
        h5f.create_dataset('index', data=indices)

        if self.spectra_only is not True:
            h5f.create_dataset('SNR', data=SNR)
            h5f.create_dataset('RA', data=RA)
            h5f.create_dataset('DEC', data=DEC)
            h5f.create_dataset('Kmag', data=Kmag)
            h5f.create_dataset('AK_TARG', data=AK_TARG)
            h5f.create_dataset('teff', data=teff)
            h5f.create_dataset('logg', data=logg)
            h5f.create_dataset('M', data=MH)
            h5f.create_dataset('alpha', data=alpha_M)
            h5f.create_dataset('C', data=C)
            h5f.create_dataset('C1', data=C1)
            h5f.create_dataset('N', data=N)
            h5f.create_dataset('O', data=O)
            h5f.create_dataset('Na', data=Na)
            h5f.create_dataset('Mg', data=Mg)
            h5f.create_dataset('Al', data=Al)
            h5f.create_dataset('Si', data=Si)
            h5f.create_dataset('P', data=P)
            h5f.create_dataset('S', data=S)
            h5f.create_dataset('K', data=K)
            h5f.create_dataset('Ca', data=Ca)
            h5f.create_dataset('Ti', data=Ti)
            h5f.create_dataset('Ti2', data=Ti2)
            h5f.create_dataset('V', data=V)
            h5f.create_dataset('Cr', data=Cr)
            h5f.create_dataset('Mn', data=Mn)
            h5f.create_dataset('Fe', data=Fe)
            h5f.create_dataset('Co', data=Co)
            h5f.create_dataset('Ni', data=Ni)
            h5f.create_dataset('Cu', data=Cu)
            h5f.create_dataset('Ge', data=Ge)
            h5f.create_dataset('Ce', data=Ce)
            h5f.create_dataset('Rb', data=Rb)
            h5f.create_dataset('Y', data=Y)
            h5f.create_dataset('Nd', data=Nd)
            h5f.create_dataset('parallax', data=parallax)
            h5f.create_dataset('fakemag', data=fakemag)

            if self.use_err is True:
                h5f.create_dataset('AK_TARG_err', data=np.zeros_like(AK_TARG))
                h5f.create_dataset('teff_err', data=teff_err)
                h5f.create_dataset('logg_err', data=logg_err)
                h5f.create_dataset('M_err', data=MH_err)
                h5f.create_dataset('alpha_err', data=alpha_M_err)
                h5f.create_dataset('C_err', data=C_err)
                h5f.create_dataset('C1_err', data=C1_err)
                h5f.create_dataset('N_err', data=N_err)
                h5f.create_dataset('O_err', data=O_err)
                h5f.create_dataset('Na_err', data=Na_err)
                h5f.create_dataset('Mg_err', data=Mg_err)
                h5f.create_dataset('Al_err', data=Al_err)
                h5f.create_dataset('Si_err', data=Si_err)
                h5f.create_dataset('P_err', data=P_err)
                h5f.create_dataset('S_err', data=S_err)
                h5f.create_dataset('K_err', data=K_err)
                h5f.create_dataset('Ca_err', data=Ca_err)
                h5f.create_dataset('Ti_err', data=Ti_err)
                h5f.create_dataset('Ti2_err', data=Ti2_err)
                h5f.create_dataset('V_err', data=V_err)
                h5f.create_dataset('Cr_err', data=Cr_err)
                h5f.create_dataset('Mn_err', data=Mn_err)
                h5f.create_dataset('Fe_err', data=Fe_err)
                h5f.create_dataset('Co_err', data=Co_err)
                h5f.create_dataset('Ni_err', data=Ni_err)
                h5f.create_dataset('Cu_err', data=Cu_err)
                h5f.create_dataset('Ge_err', data=Ge_err)
                h5f.create_dataset('Ce_err', data=Ce_err)
                h5f.create_dataset('Rb_err', data=Rb_err)
                h5f.create_dataset('Y_err', data=Y_err)
                h5f.create_dataset('Nd_err', data=Nd_err)
                h5f.create_dataset('parallax_err', data=parallax_err)
                h5f.create_dataset('fakemag_err', data=fakemag_err)

        h5f.close()
        print(f'Successfully created {self.filename}.h5 in {currentdir}')
Пример #7
0
    def test_arXiv_1902_08634 (self):
        """
        astroNN spectrophotometric distance
        """
        from astroNN.apogee import visit_spectra, apogee_continuum
        from astroNN.gaia import extinction_correction, fakemag_to_pc
        from astropy.io import fits

        # first model
        models_url = ["https://github.com/henrysky/astroNN_gaia_dr2_paper/trunk/astroNN_no_offset_model",
                      "https://github.com/henrysky/astroNN_gaia_dr2_paper/trunk/astroNN_constant_model",
                      "https://github.com/henrysky/astroNN_gaia_dr2_paper/trunk/astroNN_multivariate_model"]

        for model_url in models_url:
            download_args = ["svn", "export", model_url]
            res = subprocess.Popen(download_args, stdout=subprocess.PIPE)
            output, _error = res.communicate()
            if not _error:
                pass
            else:
                raise ConnectionError(f"Error downloading the models {model_url}")

        opened_fits = fits.open(visit_spectra(dr=14, location=4405, apogee='2M19060637+4717296'))
        spectrum = opened_fits[1].data
        spectrum_err = opened_fits[2].data
        spectrum_bitmask = opened_fits[3].data

        # using default continuum and bitmask values to continuum normalize
        norm_spec, norm_spec_err = apogee_continuum(spectrum, spectrum_err,
                                                    bitmask=spectrum_bitmask, dr=14)
        # correct for extinction
        K = extinction_correction(opened_fits[0].header['K'], opened_fits[0].header['AKTARG'])

        # ===========================================================================================#
        # load neural net
        neuralnet = load_folder('astroNN_no_offset_model')
        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(norm_spec)
        # convert prediction in fakemag to distance
        pc, pc_error = fakemag_to_pc(pred[:, 0], K, pred_err['total'][:, 0])
        # assert distance is close enough
        # http://simbad.u-strasbg.fr/simbad/sim-id?mescat.distance=on&Ident=%406876647&Name=KIC+10196240&submit=display+selected+measurements#lab_meas
        # no offset correction so further away
        self.assertEqual(pc.value < 1250, True)
        self.assertEqual(pc.value > 1100, True)

        # ===========================================================================================#
        # load neural net
        neuralnet = load_folder('astroNN_constant_model')
        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(np.hstack([norm_spec, np.zeros((norm_spec.shape[0], 4))]))
        # convert prediction in fakemag to distance
        pc, pc_error = fakemag_to_pc(pred[:, 0], K, pred_err['total'][:, 0])
        # assert distance is close enough
        # http://simbad.u-strasbg.fr/simbad/sim-id?mescat.distance=on&Ident=%406876647&Name=KIC+10196240&submit=display+selected+measurements#lab_meas
        self.assertEqual(pc.value < 1150, True)
        self.assertEqual(pc.value > 1000, True)

        # ===========================================================================================#
        # load neural net
        neuralnet = load_folder('astroNN_multivariate_model')
        # inference, if there are multiple visits, then you should use the globally
        # weighted combined spectra (i.e. the second row)
        pred, pred_err = neuralnet.test(np.hstack([norm_spec, np.zeros((norm_spec.shape[0], 4))]))
        # convert prediction in fakemag to distance
        pc, pc_error = fakemag_to_pc(pred[:, 0], K, pred_err['total'][:, 0])
        # assert distance is close enough
        # http://simbad.u-strasbg.fr/simbad/sim-id?mescat.distance=on&Ident=%406876647&Name=KIC+10196240&submit=display+selected+measurements#lab_meas
        self.assertEqual(pc.value < 1150, True)
        self.assertEqual(pc.value > 1000, True)