Пример #1
0
    def test_bayesian_binary_mnist(self):
        # Create a astroNN neural network instance and set the basic parameter
        net = MNIST_BCNN()
        net.task = 'binary_classification'
        net.callbacks = ErrorOnNaN()
        net.max_epochs = 1
        net.train(x_train, y_train)
        pred, pred_err = net.test(x_test)
        test_num = y_test.shape[0]

        net.save('mnist_binary_bcnn_test')
        net_reloaded = load_folder("mnist_binary_bcnn_test")
        net_reloaded.mc_num = 3
        prediction_loaded, prediction_loaded_err = net_reloaded.test(x_test)
Пример #2
0
    def test_bayesian_binary_mnist(self):
        # Create a astroNN neural network instance and set the basic parameter
        net = MNIST_BCNN()
        net.task = 'binary_classification'
        net.callbacks = ErrorOnNaN()
        net.max_epochs = 1  # Just use 1 epochs for quick result

        # Train the neural network
        net.train(self.x_train[:200], self.y_train[:200])

        net.save('mnist_binary_bcnn_test')
        net_reloaded = load_folder("mnist_binary_bcnn_test")
        net_reloaded.mc_num = 3  # prevent memory issue on Tavis CI
        prediction_loaded = net_reloaded.test(self.x_test[:200])
Пример #3
0
    def test_bayesian_binary_mnist(self):
        (x_train, y_train), (x_test, y_test) = mnist.load_data()

        y_train = utils.to_categorical(y_train, 10)
        y_train = y_train.astype(np.float32)
        x_train = x_train.astype(np.float32)
        x_test = x_test.astype(np.float32)

        # Create a astroNN neural network instance and set the basic parameter
        net = MNIST_BCNN()
        net.task = 'binary_classification'
        net.callbacks = ErrorOnNaN()
        net.max_epochs = 1  # Just use 5 epochs for quick result

        # Trian the nerual network
        net.train(x_train[:200], y_train[:200])

        net.save('mnist_binary_bcnn_test')
        net_reloaded = load_folder("mnist_binary_bcnn_test")
        net_reloaded.mc_num = 3  # prevent memory issue on Tavis CI
        prediction_loaded = net_reloaded.test(x_test[:200])
Пример #4
0
    def test_bayesian_mnist(self):
        from astroNN.models import MNIST_BCNN
        import pylab as plt
        (x_train, y_train), (x_test, y_test) = mnist.load_data()

        y_train = utils.to_categorical(y_train, 10)
        # To convert to desirable type
        y_train = y_train.astype(np.float32)
        x_train = x_train.astype(np.float32)
        x_test = x_test.astype(np.float32)

        # Create a astroNN neural network instance and set the basic parameter
        net = MNIST_BCNN()
        net.task = 'classification'
        net.callbacks = ErrorOnNaN()
        net.max_epochs = 1  # Just use 5 epochs for quick result

        # Trian the nerual network
        net.train(x_train[:200], y_train[:200])
        plt.close()  # Travis-CI memory error??
        # net.plot_model()  # disable due to memory issue on Travis CI
        net.save('mnist_bcnn_test')
        net.plot_dense_stats()
        net.evaluate(x_train[:10], y_train[:10])

        net_reloaded = load_folder("mnist_bcnn_test")
        net_reloaded.mc_num = 3  # prevent memory issue on Tavis CI
        prediction_loaded = net_reloaded.test(x_test[:200])

        net_reloaded.folder_name = None  # set to None so it can be saved
        net_reloaded.save()

        load_folder(
            net_reloaded.folder_name)  # ignore pycharm warning, its not None
Пример #5
0
    def test_bayesian_mnist(self):
        import pylab as plt

        # Create a astroNN neural network instance and set the basic parameter
        net = MNIST_BCNN()
        net.task = 'classification'
        net.callbacks = ErrorOnNaN()
        net.max_epochs = 1

        # Train the neural network
        net.train(x_train, y_train)
        net.save('mnist_bcnn_test')
        net.plot_dense_stats()
        plt.close()  # Travis-CI memory error??
        net.evaluate(x_test, utils.to_categorical(y_test, 10))

        pred, pred_err = net.test(x_test)
        test_num = y_test.shape[0]
        assert (np.sum(pred == y_test)) / test_num > 0.9  # assert accuracy

        net_reloaded = load_folder("mnist_bcnn_test")
        net_reloaded.mc_num = 3  # prevent memory issue on Tavis CI
        prediction_loaded = net_reloaded.test(x_test[:200])

        net_reloaded.folder_name = None  # set to None so it can be saved
        net_reloaded.save()

        load_folder(net_reloaded.folder_name)  # ignore pycharm warning, its not None