Пример #1
0
class HorizonFrame(BaseCoordinateFrame):
    """Horizon coordinate frame. Spherical system used to describe the direction
    of a given position, in terms of the altitude and azimuth of the system. In
    practice this is functionally identical as the astropy AltAz system, but this
    implementation allows us to pass array pointing information, allowing us to directly
    transform to the Horizon Frame from the Camera system.
    The Following attributes are carried over from the telescope frame
    to allow a direct transformation from the camera frame

    Frame attributes:

    * ``array_direction``
        Alt,Az direction of the array pointing
    * ``pointing_direction``
        Alt,Az direction of the telescope pointing

    """
    default_representation = UnitSphericalRepresentation

    frame_specific_representation_info = {
        'spherical': [
            RepresentationMapping('lon', 'az'),
            RepresentationMapping('lat', 'alt')
        ],
    }

    frame_specific_representation_info[
        'unitspherical'] = frame_specific_representation_info['spherical']

    pointing_direction = FrameAttribute(default=None)
    array_direction = FrameAttribute(default=None)
Пример #2
0
class NominalFrame(BaseCoordinateFrame):
    """Nominal coordinate frame.  Cartesian system to describe the angular
    offset of a given position in reference to pointing direction of a
    nominal array pointing position. In most cases this frame is the
    same as the telescope frame, however in the case of divergent
    pointing they will differ.  Event reconstruction should be
    performed in this system

    Frame attributes:

    * ``pointing_direction``
      Alt,Az direction of the array pointing

    The Following attributes are carried over from the telescope frame
    to allow a direct transformation from the camera frame

    * ``focal_length``
      Focal length of the telescope 
    * ``rotation``
      Rotation angle of the camera (0 in most cases) [deg]
    * ``pointing_direction``
      Alt,Az direction of the telescope pointing

    """
    default_representation = CartesianRepresentation
    array_direction = FrameAttribute(default=None)
    pointing_direction = FrameAttribute(default=None)

    rotation = FrameAttribute(default=0 * u.deg)
    focal_length = FrameAttribute(default=None)
Пример #3
0
class OpticalVelocity(BaseCoordinateFrame):
    default_representation = Cartesian1DRepresentation
    reference_position = FrameAttribute(default='BARYCENTER')
    rest = FrameAttribute()
    frame_specific_representation_info = {
        'cartesian1d': [RepresentationMapping('x', 'v', 'm/s')]
    }
Пример #4
0
class TiltedTelescopeFrame(BaseCoordinateFrame):
    """Tilted telescope coordinate frame.
    """
    default_representation = CartesianRepresentation

    # Is this the right frame for these attributes?
    pointing_direction = FrameAttribute(default=None)
    telescope_location = FrameAttribute(default=None)
Пример #5
0
class Heliocentric(BaseCoordinateFrame):
    """
    A coordinate or frame in the Heliocentric system.
    This frame may either be specified in Cartesian
    or cylindrical representation.
    Cylindrical representation replaces (x, y) with
    (rho, psi) where rho is the impact parameter and
    psi is the position angle in degrees.

    Parameters
    ----------
    representation: `~astropy.coordinates.BaseRepresentation` or None.
        A representation object. If specified, other parameters must
        be in keyword form and if x, y and z are specified, it must
        be None.
    x: `Quantity` object.
        X-axis coordinate, optional, must be keyword.
    y: `Quantity` object.
        Y-axis coordinate, optional, must be keyword.
    z: `Quantity` object. Shared by both representations.
        Z-axis coordinate, optional, must be keyword.
    D0: `Quantity` object.
        Represents the distance between the observer and the Sun center.
        Defaults to 1AU.

    Examples
    --------
    >>> from astropy.coordinates import SkyCoord, CartesianRepresentation
    >>> import sunpy.coordinates
    >>> import astropy.units as u
    >>> sc = SkyCoord(CartesianRepresentation(10*u.km, 1*u.km, 2*u.km),
    ...               dateobs="2011/01/05T00:00:50", frame="heliocentric")
    >>> sc
    <SkyCoord (HelioCentric): dateobs=2011-01-05 00:00:50, D0=149597870.7 km,
    x=10.0 km, y=1.0 km, z=2.0 km>
    >>> sc = SkyCoord([1,2]*u.km, [3,4]*u.m, [5,6]*u.cm, frame="heliocentric",
    dateobs="2011/01/01T00:00:54")
    >>> sc
    <SkyCoord (HelioCentric): dateobs=2011-01-01 00:00:54, D0=149597870.7 km,
    (x, y, z) in (km, m, cm)
        [(1.0, 3.0, 5.0), (2.0, 4.0, 6.0)]>
    """

    default_representation = CartesianRepresentation

    _frame_specific_representation_info = {
        'cylindrical': [RepresentationMapping('phi', 'psi', u.deg)]
    }

    # d = FrameAttribute(default=(1*u.au).to(u.km))
    D0 = FrameAttribute(default=(1 * u.au).to(u.km))
    dateobs = TimeFrameAttributeSunPy()
    L0 = FrameAttribute(default=0 * u.deg)
    B0 = FrameAttribute(default=0 * u.deg)
Пример #6
0
class CameraFrame(BaseCoordinateFrame):
    """Camera coordinate frame.  The camera frame is a simple physical
    cartesian frame, describing the 2 dimensional position of objects
    in the focal plane of the telescope Most Typically this will be
    used to describe the positions of the pixels in the focal plane

    Frame attributes:

    * ``focal_length``
        Focal length of the telescope as a unit quantity (usually meters)
    * ``rotation``
        Rotation angle of the camera (0 deg in most cases)
    """
    default_representation = CartesianRepresentation
    focal_length = FrameAttribute(default=None)
    rotation = FrameAttribute(default=0 * u.deg)
    pointing_direction = FrameAttribute(default=None)
    array_direction = FrameAttribute(default=None)
Пример #7
0
class TelescopeFrame(BaseCoordinateFrame):
    """Telescope coordinate frame.
    Cartesian system to describe the angular offset of a given position in reference to
    pointing direction of a given telescope
    When pointing corrections become available they should be applied to the transformation
    between this frame and the camera frame

    Frame attributes:

    - Focal length: Focal length of the telescope [m]
    - Rotation: Rotation angle of the camera (should be 0 in most cases) [deg]
    - Pointing Direction: Alt,Az direction of the telescope pointing
    """
    default_representation = CartesianRepresentation

    focal_length = FrameAttribute(default=None)
    rotation = FrameAttribute(default=0*u.deg)

    pointing_direction = FrameAttribute(default=None)
Пример #8
0
class NominalFrame(BaseCoordinateFrame):
    """Nominal coordinate frame.  Cartesian system to describe the angular
    offset of a given position in reference to pointing direction of a
    nominal array pointing position. In most cases this frame is the
    same as the telescope frame, however in the case of divergent
    pointing they will differ.  Event reconstruction should be
    performed in this system

    Frame attributes:
    
    * ``array_direction``
        Alt,Az direction of the array pointing
    * ``pointing_direction``
        Alt,Az direction of the telescope pointing

    """
    default_representation = PlanarRepresentation
    pointing_direction = FrameAttribute(default=None)
    array_direction = FrameAttribute(default=None)
Пример #9
0
class TelescopeFrame(BaseCoordinateFrame):
    """Telescope coordinate frame.

    Frame attributes:

    - Focal length
    """
    default_representation = CartesianRepresentation

    # TODO: probably this should not have a default!
    focal_length = FrameAttribute(default=15.*u.m)
Пример #10
0
class TelescopeFrame(BaseCoordinateFrame):
    """Telescope coordinate frame.  Cartesian system to describe the
    angular offset of a given position in reference to pointing
    direction of a given telescope When pointing corrections become
    available they should be applied to the transformation between
    this frame and the camera frame

    Frame attributes:

    * ``focal_length``
        Focal length of the telescope as a unit quantity (usually meters)
    * ``rotation``
        Rotation angle of the camera (0 deg in most cases) 
    * ``pointing_direction``
        Alt,Az direction of the telescope pointing

    """
    default_representation = CartesianRepresentation

    focal_length = FrameAttribute(default=None)  # focal_length
    rotation = FrameAttribute(default=0 * u.deg)
    pointing_direction = FrameAttribute(default=None)
Пример #11
0
class GroundFrame(BaseCoordinateFrame):
    """Ground coordinate frame.  The ground coordinate frame is a simple
    cartesian frame describing the 3 dimensional position of objects
    compared to the array ground level in relation to the nomial
    centre of the array.  Typically this frame will be used for
    describing the position on telescopes and equipment

    Frame attributes: None

    """
    default_representation = CartesianRepresentation
    # Pointing direction of the tilted system (alt,az),
    # could be the telescope pointing direction or the reconstructed shower
    # direction
    pointing_direction = FrameAttribute(default=None)
Пример #12
0
class TiltedGroundFrame(BaseCoordinateFrame):
    """Tilted ground coordinate frame.
    The tilted ground coordinate frame is a cartesian system describing the
    2 dimensional projected positions of objects in a tilted plane described
    by pointing_direction
    Typically this frame will be used for the reconstruction of the shower core
    position

    Frame attributes:
    pointing_direction - Alt,Az direction of the tilted reference plane

    """
    default_representation = CartesianRepresentation
    # Pointing direction of the tilted system (alt,az),
    # could be the telescope pointing direction or the reconstructed shower direction
    pointing_direction = FrameAttribute(default=None)
Пример #13
0
class Helioprojective(BaseCoordinateFrame):
    """
    A coordinate or frame in the Helioprojective (Cartesian) system.

    This is a projective coordinate system centered around the observer.
    It is a full spherical coordinate system with position given as longitude
    theta_x and latitude theta_y.

    Parameters
    ----------
    representation: `~astropy.coordinates.BaseRepresentation` or None.
        A representation object. If specified, other parameters must
        be in keyword form.
    Tx: `~astropy.coordinates.Angle`  or `~astropy.units.Quantity`
        X-axis coordinate.
    Ty: `~astropy.coordinates.Angle`  or `~astropy.units.Quantity`
        Y-axis coordinate.
    distance: `~astropy.units.Quantity`
        The radial distance from the observer to the coordinate point.
    L0: `~astropy.coordinates.Angle`
        The Heliographic (Stonyhurst) Longitude of the observer.
    B0: `~astropy.coordinates.Angle` or `~astropy.units.Quantity`
        The Heliographic (Stonyhurst) Latitude of the observer.
    D0: `Quantity` object.
        Represents the distance between observer and solar center.
        **Defaults to 1 AU**.

    Examples
    --------
    >>> from astropy.coordinates import SkyCoord
    >>> import astropy.units as u
    >>> sc = SkyCoord(0*u.deg, 0*u.deg, 5*u.km, dateobs="2010/01/01T00:00:00",
    ...               frame="helioprojective")
    >>> sc
    <SkyCoord (HelioProjective): dateobs=2010-01-01 00:00:00, D0=149597870.7 km
    , Tx=0.0 arcsec, Ty=0.0 arcsec, distance=5.0 km>
    >>> sc = SkyCoord(0*u.deg, 0*u.deg, dateobs="2010/01/01T00:00:00",
    frame="helioprojective")
    >>> sc
    <SkyCoord (HelioProjective): dateobs=2010-01-01 00:00:00, D0=149597870.7 km
    , Tx=0.0 arcsec, Ty=0.0 arcsec, distance=149597870.7 km>
    """

    default_representation = SphericalWrap180Representation

    _frame_specific_representation_info = {
        'spherical': [
            RepresentationMapping('lon', 'Tx', u.arcsec),
            RepresentationMapping('lat', 'Ty', u.arcsec),
            RepresentationMapping('distance', 'distance', u.km)
        ],
        'sphericalwrap180': [
            RepresentationMapping('lon', 'Tx', u.arcsec),
            RepresentationMapping('lat', 'Ty', u.arcsec),
            RepresentationMapping('distance', 'distance', u.km)
        ],
        'unitspherical': [
            RepresentationMapping('lon', 'Tx', u.arcsec),
            RepresentationMapping('lat', 'Ty', u.arcsec)
        ],
        'unitsphericalwrap180': [
            RepresentationMapping('lon', 'Tx', u.arcsec),
            RepresentationMapping('lat', 'Ty', u.arcsec)
        ]
    }

    D0 = FrameAttribute(default=(1 * u.au).to(u.km))
    dateobs = TimeFrameAttributeSunPy()
    L0 = FrameAttribute(default=0 * u.deg)
    B0 = FrameAttribute(default=0 * u.deg)
    rsun = FrameAttribute(default=RSUN_METERS.to(u.km))

    def __init__(self, *args, **kwargs):
        _rep_kwarg = kwargs.get('representation', None)

        BaseCoordinateFrame.__init__(self, *args, **kwargs)

        # Convert from Spherical to SphericalWrap180
        # If representation was explicitly passed, do not change the rep.
        if not _rep_kwarg:
            # The base __init__ will make this a UnitSphericalRepresentation
            # This makes it Wrap180 instead
            if isinstance(self._data, UnitSphericalRepresentation):
                self._data = UnitSphericalWrap180Representation(
                    lat=self._data.lat, lon=self._data.lon)
                self.representation = UnitSphericalWrap180Representation
            # Make a Spherical Wrap180 instead
            elif isinstance(self._data, SphericalRepresentation):
                self._data = SphericalWrap180Representation(
                    lat=self._data.lat,
                    lon=self._data.lon,
                    distance=self._data.distance)
                self.representation = SphericalWrap180Representation

    def calculate_distance(self):
        """
        This method calculates the third coordnate of the Helioprojective
        frame. It assumes that the coordinate point is on the disk of the Sun
        at the rsun radius.

        If a point in the frame is off limb then NaN will be returned.

        Returns
        -------
        new_frame : `~sunpy.coordinates.frames.HelioProjective`
            A new frame instance with all the attributes of the original but
            now with a third coordinate.
        """
        # Skip if we already are 3D
        if isinstance(self._data, SphericalRepresentation):
            return self

        rep = self.represent_as(UnitSphericalWrap180Representation)
        lat, lon = rep.lat, rep.lon
        alpha = np.arccos(np.cos(lat) * np.cos(lon)).to(lat.unit)
        c = self.D0**2 - self.rsun**2
        b = -2 * self.D0.to(u.m) * np.cos(alpha)
        d = ((-1 * b) - np.sqrt(b**2 - 4 * c)) / 2
        return self.realize_frame(
            SphericalWrap180Representation(lon=lon, lat=lat, distance=d))
Пример #14
0
class GroundFrame(BaseCoordinateFrame):
    """Ground coordinate frame.
    """
    default_representation = CartesianRepresentation

    observatory_location = FrameAttribute(default=None)
Пример #15
0
class Frequency(BaseCoordinateFrame):
    default_representation = Cartesian1DRepresentation
    reference_position = FrameAttribute(default='BARYCENTER')
    frame_specific_representation_info = {
        'cartesian1d': [RepresentationMapping('x', 'freq', 'Hz')]
    }
Пример #16
0
class Wavelength(BaseCoordinateFrame):
    default_representation = Cartesian1DRepresentation
    reference_position = FrameAttribute(default='BARYCENTER')
    frame_specific_representation_info = {
        'cartesian1d': [RepresentationMapping('x', 'lambda', 'm')]
    }