Пример #1
0
def test_subpixel_indices(position, subpixel_index):
    """
    Test subpixel_indices utility function.

    Test by asserting that the function returns correct results for
    given test values.
    """
    assert np.all(subpixel_indices(position, subsampling) == subpixel_index)
Пример #2
0
def test_subpixel_indices(position, subpixel_index):
    """
    Test subpixel_indices utility function.

    Test by asserting that the function returns correct results for
    given test values.
    """
    assert np.all(subpixel_indices(position, subsampling) == subpixel_index)
Пример #3
0
    def evaluate(self, x, y, flux, x_0, y_0):
        """
        Discrete PRF model evaluation.

        Given a certain position and flux the corresponding image of
        the PSF is chosen and scaled to the flux. If x and y are
        outside the boundaries of the image, zero will be returned.

        Parameters
        ----------
        x : float
            x coordinate array in pixel coordinates.

        y : float
            y coordinate array in pixel coordinates.

        flux : float
            Model flux.

        x_0 : float
            x position of the center of the PRF.

        y_0 : float
            y position of the center of the PRF.
        """

        # Convert x and y to index arrays
        x = (x - x_0 + 0.5 + self.prf_shape[1] // 2).astype('int')
        y = (y - y_0 + 0.5 + self.prf_shape[0] // 2).astype('int')

        # Get subpixel indices
        y_sub, x_sub = subpixel_indices((y_0, x_0), self.subsampling)

        # Out of boundary masks
        x_bound = np.logical_or(x < 0, x >= self.prf_shape[1])
        y_bound = np.logical_or(y < 0, y >= self.prf_shape[0])
        out_of_bounds = np.logical_or(x_bound, y_bound)

        # Set out of boundary indices to zero
        x[x_bound] = 0
        y[y_bound] = 0
        result = flux * self._prf_array[int(y_sub), int(x_sub)][y, x]

        # Set out of boundary values to zero
        result[out_of_bounds] = 0
        return result
Пример #4
0
    def evaluate(self, x, y, flux, x_0, y_0):
        """
        Discrete PRF model evaluation.

        Given a certain position and flux the corresponding image of
        the PSF is chosen and scaled to the flux. If x and y are
        outside the boundaries of the image, zero will be returned.

        Parameters
        ----------
        x : float
            x coordinate array in pixel coordinates.
        y : float
            y coordinate array in pixel coordinates.
        flux : float
            Model flux.
        x_0 : float
            x position of the center of the PRF.
        y_0 : float
            y position of the center of the PRF.
        """

        # Convert x and y to index arrays
        x = (x - x_0 + 0.5 + self.prf_shape[1] // 2).astype('int')
        y = (y - y_0 + 0.5 + self.prf_shape[0] // 2).astype('int')

        # Get subpixel indices
        y_sub, x_sub = subpixel_indices((y_0, x_0), self.subsampling)

        # Out of boundary masks
        x_bound = np.logical_or(x < 0, x >= self.prf_shape[1])
        y_bound = np.logical_or(y < 0, y >= self.prf_shape[0])
        out_of_bounds = np.logical_or(x_bound, y_bound)

        # Set out of boundary indices to zero
        x[x_bound] = 0
        y[y_bound] = 0
        result = flux * self._prf_array[int(y_sub), int(x_sub)][y, x]

        # Set out of boundary values to zero
        result[out_of_bounds] = 0
        return result
Пример #5
0
    def create_from_image(cls,
                          imdata,
                          positions,
                          size,
                          fluxes=None,
                          mask=None,
                          mode='mean',
                          subsampling=1,
                          fix_nan=False):
        """
        Create a discrete point response function (PRF) from image data.

        Given a list of positions and size this function estimates an
        image of the PRF by extracting and combining the individual PRFs
        from the given positions.

        NaN values are either ignored by passing a mask or can be
        replaced by the mirrored value with respect to the center of the
        PRF.

        Note that if fluxes are *not* specified explicitly, it will be
        flux estimated from an aperture of the same size as the PRF
        image. This does *not* account for aperture corrections so often
        will *not* be what you want for anything other than quick-look
        needs.

        Parameters
        ----------
        imdata : array
            Data array with the image to extract the PRF from

        positions : List or array or `~astropy.table.Table`
            List of pixel coordinate source positions to use in creating
            the PRF.  If this is a `~astropy.table.Table` it must have
            columns called ``x_0`` and ``y_0``.

        size : odd int
            Size of the quadratic PRF image in pixels.

        mask : bool array, optional
            Boolean array to mask out bad values.

        fluxes : array, optional
            Object fluxes to normalize extracted PRFs. If not given (or
            None), the flux is estimated from an aperture of the same
            size as the PRF image.

        mode : {'mean', 'median'}
            One of the following modes to combine the extracted PRFs:
                * 'mean':  Take the pixelwise mean of the extracted PRFs.
                * 'median':  Take the pixelwise median of the extracted PRFs.

        subsampling : int
            Factor of subsampling of the PRF (default = 1).

        fix_nan : bool
            Fix NaN values in the data by replacing it with the
            mirrored value. Assuming that the PRF is symmetrical.

        Returns
        -------
        prf : `photutils.psf.sandbox.DiscretePRF`
            Discrete PRF model estimated from data.
        """
        # Check input array type and dimension.
        if np.iscomplexobj(imdata):
            raise TypeError('Complex type not supported')
        if imdata.ndim != 2:
            raise ValueError(f'{imdata.ndim}-d array not supported. '
                             'Only 2-d arrays supported.')
        if size % 2 == 0:
            raise TypeError("Size must be odd.")

        if fluxes is not None and len(fluxes) != len(positions):
            raise TypeError('Position and flux arrays must be of equal '
                            'length.')

        if mask is None:
            mask = np.isnan(imdata)

        if isinstance(positions, (list, tuple)):
            positions = np.array(positions)

        if isinstance(positions, Table) or \
                (isinstance(positions, np.ndarray) and
                 positions.dtype.names is not None):
            # One can do clever things like
            # positions['x_0', 'y_0'].as_array().view((positions['x_0'].dtype,
            #                                          2))
            # but that requires positions['x_0'].dtype is
            # positions['y_0'].dtype.
            # Better do something simple to allow type promotion if required.
            pos = np.empty((len(positions), 2))
            pos[:, 0] = positions['x_0']
            pos[:, 1] = positions['y_0']
            positions = pos

        if isinstance(fluxes, (list, tuple)):
            fluxes = np.array(fluxes)

        if mode == 'mean':
            combine = np.ma.mean
        elif mode == 'median':
            combine = np.ma.median
        else:
            raise Exception('Invalid mode to combine prfs.')

        data_internal = np.ma.array(data=imdata, mask=mask)
        prf_model = np.ndarray(shape=(subsampling, subsampling, size, size))
        positions_subpixel_indices = \
            np.array([subpixel_indices(_, subsampling) for _ in positions],
                     dtype=int)

        for i in range(subsampling):
            for j in range(subsampling):
                extracted_sub_prfs = []
                sub_prf_indices = np.all(positions_subpixel_indices == [j, i],
                                         axis=1)
                if not sub_prf_indices.any():
                    raise ValueError('The source coordinates do not sample '
                                     'all sub-pixel positions. Reduce the '
                                     'value of the subsampling parameter.')

                positions_sub_prfs = positions[sub_prf_indices]
                for k, position in enumerate(positions_sub_prfs):
                    x, y = position
                    extracted_prf = extract_array(data_internal, (size, size),
                                                  (y, x))
                    # Check shape to exclude incomplete PRFs at the boundaries
                    # of the image
                    if (extracted_prf.shape == (size, size)
                            and np.ma.sum(extracted_prf) != 0):
                        # Replace NaN values by mirrored value, with respect
                        # to the prf's center
                        if fix_nan:
                            prf_nan = extracted_prf.mask
                            if prf_nan.any():
                                if (prf_nan.sum() > 3
                                        or prf_nan[size // 2, size // 2]):
                                    continue
                                else:
                                    extracted_prf = mask_to_mirrored_value(
                                        extracted_prf, prf_nan,
                                        (size // 2, size // 2))
                        # Normalize and add extracted PRF to data cube
                        if fluxes is None:
                            extracted_prf_norm = (np.ma.copy(extracted_prf) /
                                                  np.ma.sum(extracted_prf))
                        else:
                            fluxes_sub_prfs = fluxes[sub_prf_indices]
                            extracted_prf_norm = (np.ma.copy(extracted_prf) /
                                                  fluxes_sub_prfs[k])
                        extracted_sub_prfs.append(extracted_prf_norm)
                    else:
                        continue
                prf_model[i, j] = np.ma.getdata(
                    combine(np.ma.dstack(extracted_sub_prfs), axis=2))
        return cls(prf_model, subsampling=subsampling)
Пример #6
0
    def create_from_image(cls, imdata, positions, size, fluxes=None,
                          mask=None, mode='mean', subsampling=1,
                          fix_nan=False):
        """
        Create a discrete point response function (PRF) from image data.

        Given a list of positions and size this function estimates an
        image of the PRF by extracting and combining the individual PRFs
        from the given positions.

        NaN values are either ignored by passing a mask or can be
        replaced by the mirrored value with respect to the center of the
        PRF.

        Note that if fluxes are *not* specified explicitly, it will be
        flux estimated from an aperture of the same size as the PRF
        image. This does *not* account for aperture corrections so often
        will *not* be what you want for anything other than quick-look
        needs.

        Parameters
        ----------
        imdata : array
            Data array with the image to extract the PRF from
        positions : List or array or `~astropy.table.Table`
            List of pixel coordinate source positions to use in creating
            the PRF.  If this is a `~astropy.table.Table` it must have
            columns called ``x_0`` and ``y_0``.
        size : odd int
            Size of the quadratic PRF image in pixels.
        mask : bool array, optional
            Boolean array to mask out bad values.
        fluxes : array, optional
            Object fluxes to normalize extracted PRFs. If not given (or
            None), the flux is estimated from an aperture of the same
            size as the PRF image.
        mode : {'mean', 'median'}
            One of the following modes to combine the extracted PRFs:
                * 'mean':  Take the pixelwise mean of the extracted PRFs.
                * 'median':  Take the pixelwise median of the extracted PRFs.
        subsampling : int
            Factor of subsampling of the PRF (default = 1).
        fix_nan : bool
            Fix NaN values in the data by replacing it with the
            mirrored value. Assuming that the PRF is symmetrical.

        Returns
        -------
        prf : `photutils.psf.sandbox.DiscretePRF`
            Discrete PRF model estimated from data.
        """

        # Check input array type and dimension.
        if np.iscomplexobj(imdata):
            raise TypeError('Complex type not supported')
        if imdata.ndim != 2:
            raise ValueError('{0}-d array not supported. '
                             'Only 2-d arrays supported.'.format(imdata.ndim))
        if size % 2 == 0:
            raise TypeError("Size must be odd.")

        if fluxes is not None and len(fluxes) != len(positions):
            raise TypeError('Position and flux arrays must be of equal '
                            'length.')

        if mask is None:
            mask = np.isnan(imdata)

        if isinstance(positions, (list, tuple)):
            positions = np.array(positions)

        if isinstance(positions, Table) or \
                (isinstance(positions, np.ndarray) and
                 positions.dtype.names is not None):
            # One can do clever things like
            # positions['x_0', 'y_0'].as_array().view((positions['x_0'].dtype,
            #                                          2))
            # but that requires positions['x_0'].dtype is
            # positions['y_0'].dtype.
            # Better do something simple to allow type promotion if required.
            pos = np.empty((len(positions), 2))
            pos[:, 0] = positions['x_0']
            pos[:, 1] = positions['y_0']
            positions = pos

        if isinstance(fluxes, (list, tuple)):
            fluxes = np.array(fluxes)

        if mode == 'mean':
            combine = np.ma.mean
        elif mode == 'median':
            combine = np.ma.median
        else:
            raise Exception('Invalid mode to combine prfs.')

        data_internal = np.ma.array(data=imdata, mask=mask)
        prf_model = np.ndarray(shape=(subsampling, subsampling, size, size))
        positions_subpixel_indices = \
            np.array([subpixel_indices(_, subsampling) for _ in positions],
                     dtype=np.int)

        for i in range(subsampling):
            for j in range(subsampling):
                extracted_sub_prfs = []
                sub_prf_indices = np.all(positions_subpixel_indices == [j, i],
                                         axis=1)
                if not sub_prf_indices.any():
                    raise ValueError('The source coordinates do not sample '
                                     'all sub-pixel positions. Reduce the '
                                     'value of the subsampling parameter.')

                positions_sub_prfs = positions[sub_prf_indices]
                for k, position in enumerate(positions_sub_prfs):
                    x, y = position
                    extracted_prf = extract_array(data_internal, (size, size),
                                                  (y, x))
                    # Check shape to exclude incomplete PRFs at the boundaries
                    # of the image
                    if (extracted_prf.shape == (size, size) and
                            np.ma.sum(extracted_prf) != 0):
                        # Replace NaN values by mirrored value, with respect
                        # to the prf's center
                        if fix_nan:
                            prf_nan = extracted_prf.mask
                            if prf_nan.any():
                                if (prf_nan.sum() > 3 or
                                        prf_nan[size // 2, size // 2]):
                                    continue
                                else:
                                    extracted_prf = mask_to_mirrored_num(
                                        extracted_prf, prf_nan,
                                        (size // 2, size // 2))
                        # Normalize and add extracted PRF to data cube
                        if fluxes is None:
                            extracted_prf_norm = (np.ma.copy(extracted_prf) /
                                                  np.ma.sum(extracted_prf))
                        else:
                            fluxes_sub_prfs = fluxes[sub_prf_indices]
                            extracted_prf_norm = (np.ma.copy(extracted_prf) /
                                                  fluxes_sub_prfs[k])
                        extracted_sub_prfs.append(extracted_prf_norm)
                    else:
                        continue
                prf_model[i, j] = np.ma.getdata(
                    combine(np.ma.dstack(extracted_sub_prfs), axis=2))
        return cls(prf_model, subsampling=subsampling)
Пример #7
0
def create_prf(data,
               positions,
               size,
               fluxes=None,
               mask=None,
               mode='mean',
               subsampling=1,
               fix_nan=False):
    """
    Estimate point response function (PRF) from image data.

    Given a list of positions and size this function estimates an image of
    the PRF by extracting and combining the individual PRFs from the given
    positions. Different modes of combining are available.

    NaN values are either ignored by passing a mask or can be replaced by
    the mirrored value with respect to the center of the PRF.

    Furthermore it is possible to specify fluxes to have a correct
    normalization of the individual PRFs. Otherwise the flux is estimated from
    a quadratic aperture of the same size as the PRF image.

    Parameters
    ----------
    data : array
        Data array
    positions : List or array
        List of pixel coordinate source positions to use in creating the PRF.
    size : odd int
        Size of the quadratic PRF image in pixels.
    mask : bool array, optional
        Boolean array to mask out bad values.
    fluxes : array, optional
        Object fluxes to normalize extracted PRFs.
    mode : {'mean', 'median'}
        One of the following modes to combine the extracted PRFs:
            * 'mean'
                Take the pixelwise mean of the extracted PRFs.
            * 'median'
                Take the pixelwise median of the extracted PRFs.
    subsampling : int
        Factor of subsampling of the PRF (default = 1).
    fix_nan : bool
        Fix NaN values in the data by replacing it with the
        mirrored value. Assuming that the PRF is symmetrical.

    Returns
    -------
    prf : `photutils.psf.DiscretePRF`
        Discrete PRF model estimated from data.

    Notes
    -----
    In Astronomy different definitions of Point Spread Function (PSF) and
    Point Response Function (PRF) are used. Here we assume that the PRF is
    an image of a point source after discretization e.g. with a CCD. This
    definition is equivalent to the `Spitzer definiton of the PRF
    <http://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/mopex/mopexusersguide/89/>`_.

    References
    ----------
    `Spitzer PSF vs. PRF
    <http://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/PRF_vs_PSF.pdf>`_

    `Kepler PSF calibration
    <http://keplerscience.arc.nasa.gov/CalibrationPSF.shtml>`_

    `The Kepler Pixel Response Function
    <http://adsabs.harvard.edu/abs/2010ApJ...713L..97B>`_
    """

    # Check input array type and dimension.
    if np.iscomplexobj(data):
        raise TypeError('Complex type not supported')
    if data.ndim != 2:
        raise ValueError('{0}-d array not supported. '
                         'Only 2-d arrays supported.'.format(data.ndim))
    if size % 2 == 0:
        raise TypeError("Size must be odd.")

    if fluxes is not None and len(fluxes) != len(positions):
        raise TypeError("Position and flux arrays must be of equal length.")

    if mask is None:
        mask = np.isnan(data)

    if isinstance(positions, (list, tuple)):
        positions = np.array(positions)

    if isinstance(fluxes, (list, tuple)):
        fluxes = np.array(fluxes)

    if mode == 'mean':
        combine = np.ma.mean
    elif mode == 'median':
        combine = np.ma.median
    else:
        raise Exception('Invalid mode to combine prfs.')

    data_internal = np.ma.array(data=data, mask=mask)
    prf_model = np.ndarray(shape=(subsampling, subsampling, size, size))
    positions_subpixel_indices = np.array(
        [subpixel_indices(_, subsampling) for _ in positions], dtype=np.int)

    for i in range(subsampling):
        for j in range(subsampling):
            extracted_sub_prfs = []
            sub_prf_indices = np.all(positions_subpixel_indices == [j, i],
                                     axis=1)
            positions_sub_prfs = positions[sub_prf_indices]
            for k, position in enumerate(positions_sub_prfs):
                x, y = position
                extracted_prf = extract_array(data_internal, (size, size),
                                              (y, x))
                # Check shape to exclude incomplete PRFs at the boundaries
                # of the image
                if (extracted_prf.shape == (size, size)
                        and np.ma.sum(extracted_prf) != 0):
                    # Replace NaN values by mirrored value, with respect
                    # to the prf's center
                    if fix_nan:
                        prf_nan = extracted_prf.mask
                        if prf_nan.any():
                            if (prf_nan.sum() > 3
                                    or prf_nan[size // 2, size // 2]):
                                continue
                            else:
                                extracted_prf = mask_to_mirrored_num(
                                    extracted_prf, prf_nan,
                                    (size // 2, size // 2))
                    # Normalize and add extracted PRF to data cube
                    if fluxes is None:
                        extracted_prf_norm = (np.ma.copy(extracted_prf) /
                                              np.ma.sum(extracted_prf))
                    else:
                        fluxes_sub_prfs = fluxes[sub_prf_indices]
                        extracted_prf_norm = (np.ma.copy(extracted_prf) /
                                              fluxes_sub_prfs[k])
                    extracted_sub_prfs.append(extracted_prf_norm)
                else:
                    continue
            prf_model[i, j] = np.ma.getdata(
                combine(np.ma.dstack(extracted_sub_prfs), axis=2))
    return DiscretePRF(prf_model, subsampling=subsampling)
Пример #8
0
def create_prf(data, positions, size, fluxes=None, mask=None, mode='mean',
               subsampling=1, fix_nan=False):
    """
    Estimate point response function (PRF) from image data.

    Given a list of positions and size this function estimates an image of
    the PRF by extracting and combining the individual PRFs from the given
    positions. Different modes of combining are available.

    NaN values are either ignored by passing a mask or can be replaced by
    the mirrored value with respect to the center of the PRF.

    Furthermore it is possible to specify fluxes to have a correct
    normalization of the individual PRFs. Otherwise the flux is estimated from
    a quadratic aperture of the same size as the PRF image.

    Parameters
    ----------
    data : array
        Data array
    positions : List or array
        List of pixel coordinate source positions to use in creating the PRF.
    size : odd int
        Size of the quadratic PRF image in pixels.
    mask : bool array, optional
        Boolean array to mask out bad values.
    fluxes : array, optional
        Object fluxes to normalize extracted PRFs.
    mode : {'mean', 'median'}
        One of the following modes to combine the extracted PRFs:
            * 'mean'
                Take the pixelwise mean of the extracted PRFs.
            * 'median'
                Take the pixelwise median of the extracted PRFs.
    subsampling : int
        Factor of subsampling of the PRF (default = 1).
    fix_nan : bool
        Fix NaN values in the data by replacing it with the
        mirrored value. Assuming that the PRF is symmetrical.

    Returns
    -------
    prf : `photutils.psf.DiscretePRF`
        Discrete PRF model estimated from data.

    Notes
    -----
    In Astronomy different definitions of Point Spread Function (PSF) and
    Point Response Function (PRF) are used. Here we assume that the PRF is
    an image of a point source after discretization e.g. with a CCD. This
    definition is equivalent to the `Spitzer definiton of the PRF
    <http://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/mopex/mopexusersguide/89/>`_.

    References
    ----------
    `Spitzer PSF vs. PRF
    <http://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/PRF_vs_PSF.pdf>`_

    `Kepler PSF calibration
    <http://keplerscience.arc.nasa.gov/CalibrationPSF.shtml>`_

    `The Kepler Pixel Response Function
    <http://adsabs.harvard.edu/abs/2010ApJ...713L..97B>`_
    """

    # Check input array type and dimension.
    if np.iscomplexobj(data):
        raise TypeError('Complex type not supported')
    if data.ndim != 2:
        raise ValueError('{0}-d array not supported. '
                         'Only 2-d arrays supported.'.format(data.ndim))
    if size % 2 == 0:
        raise TypeError("Size must be odd.")

    if fluxes is not None and len(fluxes) != len(positions):
        raise TypeError("Position and flux arrays must be of equal length.")

    if mask is None:
        mask = np.isnan(data)

    if isinstance(positions, (list, tuple)):
        positions = np.array(positions)

    if isinstance(fluxes, (list, tuple)):
        fluxes = np.array(fluxes)

    if mode == 'mean':
        combine = np.ma.mean
    elif mode == 'median':
        combine = np.ma.median
    else:
        raise Exception('Invalid mode to combine prfs.')

    data_internal = np.ma.array(data=data, mask=mask)
    prf_model = np.ndarray(shape=(subsampling, subsampling, size, size))
    positions_subpixel_indices = np.array([subpixel_indices(_, subsampling)
                                           for _ in positions], dtype=np.int)

    for i in range(subsampling):
        for j in range(subsampling):
            extracted_sub_prfs = []
            sub_prf_indices = np.all(positions_subpixel_indices == [j, i],
                                     axis=1)
            positions_sub_prfs = positions[sub_prf_indices]
            for k, position in enumerate(positions_sub_prfs):
                x, y = position
                extracted_prf = extract_array(data_internal, (size, size),
                                              (y, x))
                # Check shape to exclude incomplete PRFs at the boundaries
                # of the image
                if (extracted_prf.shape == (size, size) and
                        np.ma.sum(extracted_prf) != 0):
                    # Replace NaN values by mirrored value, with respect
                    # to the prf's center
                    if fix_nan:
                        prf_nan = extracted_prf.mask
                        if prf_nan.any():
                            if (prf_nan.sum() > 3 or
                                    prf_nan[size // 2, size // 2]):
                                continue
                            else:
                                extracted_prf = mask_to_mirrored_num(
                                    extracted_prf, prf_nan,
                                    (size // 2, size // 2))
                    # Normalize and add extracted PRF to data cube
                    if fluxes is None:
                        extracted_prf_norm = (np.ma.copy(extracted_prf) /
                                              np.ma.sum(extracted_prf))
                    else:
                        fluxes_sub_prfs = fluxes[sub_prf_indices]
                        extracted_prf_norm = (np.ma.copy(extracted_prf) /
                                              fluxes_sub_prfs[k])
                    extracted_sub_prfs.append(extracted_prf_norm)
                else:
                    continue
            prf_model[i, j] = np.ma.getdata(
                combine(np.ma.dstack(extracted_sub_prfs), axis=2))
    return DiscretePRF(prf_model, subsampling=subsampling)