Пример #1
0
def test_fitness_function_results():
    """Test results for several fitness functions"""
    rng = np.random.RandomState(42)

    # Event Data
    t = rng.randn(100)
    edges = bayesian_blocks(t, fitness='events')
    assert_allclose(edges, [-2.6197451, -0.71094865, 0.36866702, 1.85227818])

    # Event data with repeats
    t[80:] = t[:20]
    edges = bayesian_blocks(t, fitness='events', p0=0.01)
    assert_allclose(edges, [-2.6197451, -0.47432431, -0.46202823, 1.85227818])

    # Regular event data
    dt = 0.01
    t = dt * np.arange(1000)
    x = np.zeros(len(t))
    N = len(t) // 10
    x[rng.randint(0, len(t), N)] = 1
    x[rng.randint(0, len(t) // 2, N)] = 1
    edges = bayesian_blocks(t, x, fitness='regular_events', dt=dt)
    assert_allclose(edges, [0, 5.105, 9.99])

    # Measured point data with errors
    t = 100 * rng.rand(20)
    x = np.exp(-0.5 * (t - 50) ** 2)
    sigma = 0.1
    x_obs = x + sigma * rng.randn(len(x))
    edges = bayesian_blocks(t, x_obs, sigma, fitness='measures')
    assert_allclose(edges, [4.360377, 48.456895, 52.597917, 99.455051])
Пример #2
0
def bin_edges_f(bin_method, mags_cols_cl):
    '''
    Obtain bin edges for each photometric dimension using the cluster region
    diagram. The 'bin_edges' list will contain all magnitudes first, and then
    all colors (in the same order in which they are read).
    '''
    bin_edges = []
    if bin_method in (
            'auto', 'fd', 'doane', 'scott', 'rice', 'sturges', 'sqrt'):

        for mag in mags_cols_cl[0]:
            bin_edges.append(np.histogram(mag, bins=bin_method)[1])
        for col in mags_cols_cl[1]:
            bin_edges.append(np.histogram(col, bins=bin_method)[1])

    elif bin_method == 'fixed':
        # Based on Bonatto & Bica (2007) 377, 3, 1301-1323 but using larger
        # the values used by them (0.25 for colors and 0.5 for magnitudes)
        for mag in mags_cols_cl[0]:
            b_num = max(2, (max(mag) - min(mag)) / 1.)
            bin_edges.append(np.histogram(mag, bins=int(b_num))[1])
        for col in mags_cols_cl[1]:
            b_num = max(2, (max(col) - min(col)) / .5)
            bin_edges.append(np.histogram(col, bins=int(b_num))[1])

    elif bin_method == 'knuth':
        for mag in mags_cols_cl[0]:
            bin_edges.append(knuth_bin_width(
                mag, return_bins=True, quiet=True)[1])
        for col in mags_cols_cl[1]:
            bin_edges.append(knuth_bin_width(
                col, return_bins=True, quiet=True)[1])

    elif bin_method == 'blocks':
        for mag in mags_cols_cl[0]:
            bin_edges.append(bayesian_blocks(mag))
        for col in mags_cols_cl[1]:
            bin_edges.append(bayesian_blocks(col))

    # TODO this method is currently hidden from the params file.
    # To be used when #325 is implemented. Currently used to test
    # multi-dimensional likelihoods.
    #
    # For 4 to 6 dimensions the rule below appears to be a somewhat reasonable
    # rule of thumb for the number of bins for each dimension.
    # There is a trade-off between a large number of smaller bins which
    # better match features of the observed cluster but benefits larger
    # mass values, and fewer larger bins which better match masses but losing
    # finer details of the cluster.
    elif bin_method == 'man':
        d = len(mags_cols_cl[0]) + len(mags_cols_cl[1])
        b_num = [15, 10, 7][d - 4]
        for mag in mags_cols_cl[0]:
            bin_edges.append(np.histogram(mag, bins=int(b_num))[1])
        for col in mags_cols_cl[1]:
            bin_edges.append(np.histogram(col, bins=int(b_num))[1])

    return bin_edges
Пример #3
0
def test_duplicate_events(rseed=0):
    rng = np.random.RandomState(rseed)
    t = rng.rand(100)
    t[80:] = t[:20]

    x = np.ones_like(t)
    x[:20] += 1

    bins1 = bayesian_blocks(t)
    bins2 = bayesian_blocks(t[:80], x[:80])

    assert_allclose(bins1, bins2)
Пример #4
0
def test_duplicate_events(rseed=0):
    rng = np.random.RandomState(rseed)
    t = rng.rand(100)
    t[80:] = t[:20]

    x = np.ones_like(t)
    x[:20] += 1

    bins1 = bayesian_blocks(t)
    bins2 = bayesian_blocks(t[:80], x[:80])

    assert_allclose(bins1, bins2)
Пример #5
0
def test_duplicate_events(rseed=0):
    rng = np.random.default_rng(rseed)
    t = rng.random(100)
    t[80:] = t[:20]

    # Using int array as a regression test for gh-6877
    x = np.ones(t.shape, dtype=int)
    x[:20] += 1

    bins1 = bayesian_blocks(t)
    bins2 = bayesian_blocks(t[:80], x[:80])

    assert_allclose(bins1, bins2)
Пример #6
0
def test_duplicate_events(rseed=0):
    rng = np.random.RandomState(rseed)
    t = rng.rand(100)
    t[80:] = t[:20]

    x = np.ones_like(t)
    x[:20] += 1

    with pytest.warns(AstropyUserWarning,
                      match=r'p0 does not seem to accurate'):
        bins1 = bayesian_blocks(t)
        bins2 = bayesian_blocks(t[:80], x[:80])

    assert_allclose(bins1, bins2)
Пример #7
0
def test_duplicate_events(rseed=0):
    rng = np.random.RandomState(rseed)
    t = rng.rand(100)
    t[80:] = t[:20]

    # Using int array as a regression test for gh-6877
    x = np.ones(t.shape, dtype=int)
    x[:20] += 1

    with pytest.warns(AstropyUserWarning,
                      match=r'p0 does not seem to accurate'):
        bins1 = bayesian_blocks(t)
        bins2 = bayesian_blocks(t[:80], x[:80])

    assert_allclose(bins1, bins2)
Пример #8
0
 def Bayesian(self, x):
     I = bayesian_blocks(x[:, 0], p0=0.01)  #Interval partition
     I = np.ceil(I).astype(int)
     self.I = zip(I[:-1], I[1:])
     if self.I[-1][0] == self.I[-1][1]:
         del self.I[-1]
     self.I_number = len(self.I)
    def timeslice(self, lcbinwidth=0.05, gamma=1e-300):
        det = ['n3', 'n4']
        for i in range(1):
            file = glob(self.datadir + 'glg_tte_' + det2[i] + '_' +
                        self.bnname + '_v*.fit')
            print(file)
        fitfile = file

        hdu = fits.open(fitfile)
        data = hdu['events'].data['time']
        trigtime = hdu[0].header['trigtime']
        time = data - trigtime
        tte = time[(time > -10) & (time < 50)]
        fig = plt.figure()

        edges = np.arange(tte[0], tte[-1] + lcbinwidth, lcbinwidth)
        histvalue, histbin = np.histogram(tte, bins=edges)
        plottime = histbin
        plotrate = histvalue / lcbinwidth
        plotrate = np.concatenate(([plotrate[0]], plotrate))

        edges = bayesian_blocks(plottime,
                                plotrate,
                                fitness='events',
                                p0=1e-1,
                                gamma=1e-300)
        histvalue, histbin = np.histogram(tte, bins=edges)
        plottime = histbin
        plotrate = histvalue / (histbin[1:] - histbin[:-1])
        plotrate = np.concatenate(([plotrate[0]], plotrate))

        l = len(edges)
        for i in range(1, l - 1):
            time_slice.append(edges[i])
        print(time_slice)
Пример #10
0
def histogram(a, bins=10, range=None, **kwargs):
    """Enhanced histogram

    This is a histogram function that enables the use of more sophisticated
    algorithms for determining bins.  Aside from the `bins` argument allowing
    a string specified how bins are computed, the parameters are the same
    as numpy.histogram().

    Parameters
    ----------
    a : array_like
        array of data to be histogrammed

    bins : int or list or str (optional)
        If bins is a string, then it must be one of:
        'blocks' : use bayesian blocks for dynamic bin widths
        'knuth' : use Knuth's rule to determine bins
        'scotts' : use Scott's rule to determine bins
        'freedman' : use the Freedman-diaconis rule to determine bins

    range : tuple or None (optional)
        the minimum and maximum range for the histogram.  If not specified,
        it will be (x.min(), x.max())

    other keyword arguments are described in numpy.hist().

    Returns
    -------
    hist : array
        The values of the histogram. See `normed` and `weights` for a
        description of the possible semantics.
    bin_edges : array of dtype float
        Return the bin edges ``(length(hist)+1)``.

    See Also
    --------
    numpy.histogram
    astroML.plotting.hist
    """
    a = np.asarray(a)

    # if range is specified, we need to truncate the data for
    # the bin-finding routines
    if (range is not None and (bins in ['blocks', 'knuth',
                                        'scotts', 'freedman'])):
        a = a[(a >= range[0]) & (a <= range[1])]

    if isinstance(bins, str):
        if bins == 'blocks':
            bins = astropy_stats.bayesian_blocks(a)
        elif bins == 'knuth':
            da, bins = astropy_stats.knuth_bin_width(a, True)
        elif bins == 'scotts':
            da, bins = astropy_stats.scott_bin_width(a, True)
        elif bins == 'freedman':
            da, bins = astropy_stats.freedman_bin_width(a, True)
        else:
            raise ValueError("unrecognized bin code: '{}'".format(bins))

    return np.histogram(a, bins, range, **kwargs)
Пример #11
0
 def estimate_bayesian_blocks(self, x, y, yerr):
     '''
     :param x: x-data points (typically JD dates)
     :param y: y-data points (typically mag/fluxes)
     :param yerr: y-data errors (in the same units
     :return: bayesianblocks dict with the x values,
              the xerr (extension of the block) and
              y/yerr (weighted average and errors).
     '''
     # make sure we have have numpy arrays
     x = np.asarray(x)
     y = np.asarray(y)
     yerr = np.asarray(yerr)
     # false alarm probability
     p0 = self.run_config['bblocks_p0']
     edges = astats.bayesian_blocks(x, y, yerr, fitness='measures', p0=p0)
     bayesianblocks = {'x': [], 'xerr': [], 'y': [], 'yerr': []}
     for xmin, xmax in zip(edges[:-1], edges[1:]):
         filt = (x >= xmin) * (x < xmax)
         if np.sum(filt) == 0: continue
         xave = (xmin + xmax) / 2.
         xerr = (xmax - xmin) / 2.
         yave = np.average(y[filt], weights=1. / yerr[filt]**2)
         ystd = (np.sum(1. / yerr[filt]**2))**(-1. / 2)
         bayesianblocks['x'].append(xave)
         bayesianblocks['xerr'].append(xerr)
         bayesianblocks['y'].append(yave)
         bayesianblocks['yerr'].append(ystd)
     return (bayesianblocks)
Пример #12
0
def test_zero_change_points(rseed=0):
    ''' Ensure that edges contains both endpoints when there are no change points '''
    np.random.seed(rseed)
    # Using the failed edge case from https://github.com/astropy/astropy/issues/8558
    values = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2])
    bins = bayesian_blocks(values)
    assert values.min() == bins[0]
    assert values.max() == bins[-1]
Пример #13
0
def test_single_change_point(rseed=0):
    rng = np.random.default_rng(rseed)
    x = np.concatenate([rng.random(100), 1 + rng.random(200)])

    bins = bayesian_blocks(x)

    assert (len(bins) == 3)
    assert_allclose(bins[1], 0.927289, rtol=0.02)
Пример #14
0
def test_single_change_point(rseed=0):
    rng = np.random.RandomState(rseed)
    x = np.concatenate([rng.rand(100), 1 + rng.rand(200)])

    bins = bayesian_blocks(x)

    assert (len(bins) == 3)
    assert_allclose(bins[1], 1, rtol=0.02)
Пример #15
0
    def bbduration(self, lcbinwidth=0.05, gamma=1e-300):
        os.chdir(self.resultdir)
        det = ['n9', 'n4']
        file = glob(self.datadir + 'glg_tte_' + det[0] + '_' + self.bnname +
                    '_v*.fit')
        print(file)
        fitfile = file[0]
        hdu = fits.open(fitfile)
        data = hdu['events'].data['time']
        trigtime = hdu[0].header['trigtime']
        time = data - trigtime
        tte = time[(time > -10) & (time < 50)]
        fig = plt.figure()
        ax1 = fig.add_subplot(111)
        ax2 = ax1.twinx()
        edges = np.arange(tte[0], tte[-1] + lcbinwidth, lcbinwidth)
        histvalue, histbin = np.histogram(tte, bins=edges)
        plottime = histbin
        plotrate = histvalue / lcbinwidth
        plotrate = np.concatenate(([plotrate[0]], plotrate))
        ax1.plot(plottime, plotrate, linestyle='steps', color='lightgreen')
        edges = bayesian_blocks(plottime,
                                plotrate,
                                fitness='events',
                                p0=1e-1,
                                gamma=1e-300)
        histvalue, histbin = np.histogram(tte, bins=edges)
        plottime = histbin
        plotrate = histvalue / (histbin[1:] - histbin[:-1])
        plotrate = np.concatenate(([plotrate[0]], plotrate))
        #ax1.plot(plottime,plotrate,linestyle='steps',color='b')
        ax1.set_xlabel('time')
        ax1.set_ylabel('Count')
        l = len(edges)

        x = []
        dx = []
        for i in range(l - 3):
            s = (edges[i + 1] + edges[i + 2]) / 2
            z = (edges[i + 2] - edges[i + 1]) / 2
            x.append(s)
            dx.append(z)

        dy = [epeak_error_p, epeak_error_n]

        ax2.scatter(x, epeak, color='black', zorder=2, marker='.', s=50.)
        ax2.errorbar(x,
                     epeak,
                     xerr=dx,
                     yerr=dy,
                     zorder=1,
                     fmt='o',
                     color='0.15',
                     markersize=1e-50)

        ax2.set_ylim(0, 600)
        ax2.set_ylabel('Epeak')
        plt.savefig('bbdurations.png')
Пример #16
0
def test_single_change_point(rseed=0):
    rng = np.random.RandomState(rseed)
    x = np.concatenate([rng.rand(100),
                        1 + rng.rand(200)])

    bins = bayesian_blocks(x)

    assert (len(bins) == 3)
    assert_allclose(bins[1], 1, rtol=0.02)
Пример #17
0
def test_fitness_function_results():
    """Test results for several fitness functions"""
    rng = np.random.RandomState(42)

    # Event Data
    t = rng.randn(100)
    with pytest.warns(AstropyUserWarning,
                      match=r'p0 does not seem to accurate'):
        edges = bayesian_blocks(t, fitness='events')
    assert_allclose(edges, [-2.6197451, -0.71094865, 0.36866702, 1.85227818])

    # Event data with repeats
    t[80:] = t[:20]
    with pytest.warns(AstropyUserWarning,
                      match=r'p0 does not seem to accurate'):
        edges = bayesian_blocks(t, fitness='events', p0=0.01)
    assert_allclose(edges, [-2.6197451, -0.47432431, -0.46202823, 1.85227818])

    # Regular event data
    dt = 0.01
    t = dt * np.arange(1000)
    x = np.zeros(len(t))
    N = len(t) // 10
    x[rng.randint(0, len(t), N)] = 1
    x[rng.randint(0, len(t) // 2, N)] = 1
    edges = bayesian_blocks(t, x, fitness='regular_events', dt=dt)
    assert_allclose(edges, [0, 5.105, 9.99])

    # Measured point data with errors
    t = 100 * rng.rand(20)
    x = np.exp(-0.5 * (t - 50)**2)
    sigma = 0.1
    x_obs = x + sigma * rng.randn(len(x))
    edges = bayesian_blocks(t, x_obs, sigma, fitness='measures')
    expected = [4.360377, 48.456895, 52.597917, 99.455051]
    assert_allclose(edges, expected)

    # Optional arguments are passed (p0)
    p0_sel = 0.05
    edges = bayesian_blocks(t, x_obs, sigma, fitness='measures', p0=p0_sel)
    assert_allclose(edges, expected)

    # Optional arguments are passed (ncp_prior)
    ncp_prior_sel = 4 - np.log(73.53 * p0_sel * (len(t)**-0.478))
    edges = bayesian_blocks(t,
                            x_obs,
                            sigma,
                            fitness='measures',
                            ncp_prior=ncp_prior_sel)
    assert_allclose(edges, expected)

    # Optional arguments are passed (gamma)
    gamma_sel = np.exp(-ncp_prior_sel)
    edges = bayesian_blocks(t,
                            x_obs,
                            sigma,
                            fitness='measures',
                            gamma=gamma_sel)
    assert_allclose(edges, expected)
Пример #18
0
def test_single_change_point(rseed=0):
    rng = np.random.RandomState(rseed)
    x = np.concatenate([rng.rand(100), 1 + rng.rand(200)])

    with pytest.warns(AstropyUserWarning,
                      match=r'p0 does not seem to accurate'):
        bins = bayesian_blocks(x)

    assert (len(bins) == 3)
    assert_allclose(bins[1], 1, rtol=0.02)
Пример #19
0
def test_regular_events():
    rng = np.random.RandomState(0)
    dt = 0.01
    steps = np.concatenate([np.unique(rng.randint(0, 500, 100)),
                            np.unique(rng.randint(500, 1000, 200))])
    t = dt * steps

    # string fitness
    bins1 = bayesian_blocks(t, fitness='regular_events', dt=dt)
    assert (len(bins1) == 3)
    assert_allclose(bins1[1], 5, rtol=0.05)

    # class name fitness
    bins2 = bayesian_blocks(t, fitness=RegularEvents, dt=dt)
    assert_allclose(bins1, bins2)

    # class instance fitness
    bins3 = bayesian_blocks(t, fitness=RegularEvents(dt=dt))
    assert_allclose(bins1, bins3)
Пример #20
0
def test_measures_fitness_heteroscedastic():
    rng = np.random.RandomState(1)
    t = np.linspace(0, 1, 11)
    x = np.exp(-0.5 * (t - 0.5)**2 / 0.01**2)
    sigma = 0.02 + 0.02 * rng.rand(len(x))
    x = x + sigma * rng.randn(len(x))

    bins = bayesian_blocks(t, x, sigma, fitness='measures')

    assert_allclose(bins, [0, 0.45, 0.55, 1])
Пример #21
0
def test_regular_events():
    rng = np.random.RandomState(0)
    dt = 0.01
    steps = np.concatenate([np.unique(rng.randint(0, 500, 100)),
                            np.unique(rng.randint(500, 1000, 200))])
    t = dt * steps

    # string fitness
    bins1 = bayesian_blocks(t, fitness='regular_events', dt=dt)
    assert (len(bins1) == 3)
    assert_allclose(bins1[1], 5, rtol=0.05)

    # class name fitness
    bins2 = bayesian_blocks(t, fitness=RegularEvents, dt=dt)
    assert_allclose(bins1, bins2)

    # class instance fitness
    bins3 = bayesian_blocks(t, fitness=RegularEvents(dt=dt))
    assert_allclose(bins1, bins3)
Пример #22
0
def test_measures_fitness_homoscedastic(rseed=0):
    rng = np.random.default_rng(rseed)
    t = np.linspace(0, 1, 11)
    x = np.exp(-0.5 * (t - 0.5)**2 / 0.01**2)
    sigma = 0.05
    x = x + sigma * rng.standard_normal(len(x))

    bins = bayesian_blocks(t, x, sigma, fitness='measures')

    assert_allclose(bins, [0, 0.45, 0.55, 1])
Пример #23
0
def test_measures_fitness_heteroscedastic():
    rng = np.random.RandomState(1)
    t = np.linspace(0, 1, 11)
    x = np.exp(-0.5 * (t - 0.5) ** 2 / 0.01 ** 2)
    sigma = 0.02 + 0.02 * rng.rand(len(x))
    x = x + sigma * rng.randn(len(x))

    bins = bayesian_blocks(t, x, sigma, fitness='measures')

    assert_allclose(bins, [0, 0.45, 0.55, 1])
Пример #24
0
def prepObsMass(obs_mass, bin_edges):
    """
    """
    # Obtain histogram for observed cluster.
    if bin_edges == 'knuth':
        bin_edges = knuth_bin_width(obs_mass, return_bins=True, quiet=True)[1]
    elif bin_edges == 'block':
        bin_edges = bayesian_blocks(obs_mass)
    cl_histo, bin_edges = np.histogram(obs_mass, bins=bin_edges)

    return [bin_edges, cl_histo]
Пример #25
0
def test_fitness_function_results():
    """Test results for several fitness functions"""
    rng = np.random.default_rng(42)

    # Event Data
    t = rng.standard_normal(100)
    edges = bayesian_blocks(t, fitness='events')
    assert_allclose(edges, [-1.95103519, -1.01861547, 0.95442154, 2.1416476])

    # Event data with repeats
    t[80:] = t[:20]
    edges = bayesian_blocks(t, fitness='events', p0=0.01)
    assert_allclose(edges, [-1.95103519, -1.08663566, 1.17575682, 2.1416476])

    # Regular event data
    dt = 0.01
    t = dt * np.arange(1000)
    x = np.zeros(len(t))
    N = len(t) // 10
    x[rng.integers(0, len(t), N)] = 1
    x[rng.integers(0, len(t) // 2, N)] = 1
    edges = bayesian_blocks(t, x, fitness='regular_events', dt=dt)
    assert_allclose(edges, [0, 4.365, 4.995, 9.99])

    # Measured point data with errors
    t = 100 * rng.random(20)
    x = np.exp(-0.5 * (t - 50)**2)
    sigma = 0.1
    x_obs = x + sigma * rng.standard_normal(len(x))
    edges = bayesian_blocks(t, x_obs, sigma, fitness='measures')
    expected = [1.39362877, 44.30811196, 49.46626158, 54.37232704, 92.7562551]
    assert_allclose(edges, expected)

    # Optional arguments are passed (p0)
    p0_sel = 0.05
    edges = bayesian_blocks(t, x_obs, sigma, fitness='measures', p0=p0_sel)
    assert_allclose(edges, expected)

    # Optional arguments are passed (ncp_prior)
    ncp_prior_sel = 4 - np.log(73.53 * p0_sel * (len(t)**-0.478))
    edges = bayesian_blocks(t,
                            x_obs,
                            sigma,
                            fitness='measures',
                            ncp_prior=ncp_prior_sel)
    assert_allclose(edges, expected)

    # Optional arguments are passed (gamma)
    gamma_sel = np.exp(-ncp_prior_sel)
    edges = bayesian_blocks(t,
                            x_obs,
                            sigma,
                            fitness='measures',
                            gamma=gamma_sel)
    assert_allclose(edges, expected)
Пример #26
0
    def fit(self, X, sample_weight=None, **kwargs):
        # Checks
        X = check_array(X)
        if sample_weight is not None and len(sample_weight) != len(X):
            raise ValueError

        # Compute histogram and edges
        if self.bins == "blocks":
            bins = bayesian_blocks(X.ravel(), fitness="events", p0=0.0001)
            range_ = self.range[0] if self.range else None
            h, e = np.histogram(X.ravel(), bins=bins, range=range_,
                                weights=sample_weight, normed=False)
            e = [e]

        elif self.variable_width:
            ticks = [np.percentile(X.ravel(), 100. * k / self.bins) for k
                     in range(self.bins + 1)]
            ticks[-1] += 1e-5
            range_ = self.range[0] if self.range else None
            h, e = np.histogram(X.ravel(), bins=ticks, range=range_,
                                normed=False, weights=sample_weight)
            h, e = h.astype(float), e.astype(float)
            widths = e[1:] - e[:-1]
            h = h / widths / h.sum()
            e = [e]

        else:
            bins = self.bins
            h, e = np.histogramdd(X, bins=bins, range=self.range,
                                  weights=sample_weight, normed=True)

        # Add empty bins for out of bound samples
        for j in range(X.shape[1]):
            h = np.insert(h, 0, 0., axis=j)
            h = np.insert(h, h.shape[j], 0., axis=j)
            e[j] = np.insert(e[j], 0, -np.inf)
            e[j] = np.insert(e[j], len(e[j]), np.inf)

        if X.shape[1] == 1 and self.interpolation:
            inputs = e[0][2:-1] - (e[0][2] - e[0][1]) / 2.
            inputs[0] = e[0][1]
            inputs[-1] = e[0][-2]
            outputs = h[1:-1]
            self.interpolation_ = interp1d(inputs, outputs,
                                           kind=self.interpolation,
                                           bounds_error=False,
                                           fill_value=0.)

        self.histogram_ = h
        self.edges_ = e
        self.ndim_ = X.shape[1]
        return self
Пример #27
0
def test_zero_change_points(rseed=0):
    """
    Ensure that edges contains both endpoints when there are no change points
    """
    np.random.seed(rseed)
    # Using the failed edge case from
    # https://github.com/astropy/astropy/issues/8558
    values = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2])
    with pytest.warns(AstropyUserWarning,
                      match=r'p0 does not seem to accurate'):
        bins = bayesian_blocks(values)
    assert values.min() == bins[0]
    assert values.max() == bins[-1]
Пример #28
0
def get_bin_sizes_x(x, algo='scott'):
    """ Smartly get bin size to have a loer bias due to binning"""
    from astropy.stats import freedman_bin_width, scott_bin_width, knuth_bin_width, bayesian_blocks
    logger.info(" > Get smart bin sizes in 1D")

    if algo == 'scott':
        logger.info("use scott rule of thumb")
        width_x, bins_x = scott_bin_width(x, return_bins=True)
    elif algo == 'knuth':
        logger.info("use knuth rule of thumb")
        width_x, bins_x = knuth_bin_width(x, return_bins=True)
    elif algo == 'freedman':
        logger.info("use freedman rule of thumb")
        width_x, bins_x = freedman_bin_width(x, return_bins=True)
    elif algo == 'blocks':
        logger.info("use bayesian blocks rule of thumb")
        width_x, bins_x = bayesian_blocks(x, return_bins=True)
    else:
        raise NotImplementedError("use scott, knuth, freedman or blocks")

    return bins_x, width_x
Пример #29
0
    def timeslice(self, lcbinwidth=0.05, gamma=1e-300):
        os.chdir(self.resultdir)
        det = ['n9', 'n4']
        file = glob(self.datadir + 'glg_tte_' + det[0] + '_' + self.bnname +
                    '_v*.fit')
        print(file)
        fitfile = file[0]
        hdu = fits.open(fitfile)
        data = hdu['events'].data['time']
        trigtime = hdu[0].header['trigtime']
        time = data - trigtime
        tte = time[(time > -10) & (time < 50)]
        fig = plt.figure()
        ax1 = fig.add_subplot(111)
        ax2 = ax1.twinx()
        edges = np.arange(tte[0], tte[-1] + lcbinwidth, lcbinwidth)
        histvalue, histbin = np.histogram(tte, bins=edges)
        plottime = histbin
        plotrate = histvalue / lcbinwidth
        plotrate = np.concatenate(([plotrate[0]], plotrate))
        ax1.plot(plottime, plotrate, linestyle='steps', color='lightgreen')

        edges = bayesian_blocks(plottime,
                                plotrate,
                                fitness='events',
                                p0=1e-1,
                                gamma=1e-300)
        histvalue, histbin = np.histogram(tte, bins=edges)
        plottime = histbin
        plotrate = histvalue / (histbin[1:] - histbin[:-1])
        plotrate = np.concatenate(([plotrate[0]], plotrate))
        ax1.plot(plottime, plotrate, linestyle='steps', color='b')
        l = len(edges)
        for i in range(1, l - 1):
            time_slice.append(edges[i])
        print('time_slice', time_slice)

        plt.savefig('bb.png')
Пример #30
0
def mf(haloes, edges):
    """Bins FoF haloes
    """

    if edges == "bayes":
        edges = bayesian_blocks(haloes["M200Crit"])

    try:
        counts, edges = np.histogram(haloes["M200Crit"], edges)
    except ValueError:
        logging.exception("Error binning haloes")
        sys.exit(1)

    centres = 0.5 * (edges[1:] + edges[:-1])

    haloes = np.lib.recfunctions.append_fields(
        haloes,
        "bin",
        np.digitize(haloes["M200Crit"], edges, right=True),
        dtypes=[int],
        usemask=False,
    )

    return haloes, centres, counts
Пример #31
0
def test_errors():
    rng = np.random.RandomState(0)
    t = rng.rand(100)

    # x must be integer or None for events
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='events', x=t)

    # x must be binary for regular events
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='regular_events', x=10 * t, dt=1)

    # x must be specified for measures
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='measures')

    # sigma cannot be specified without x
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='events', sigma=0.5)

    # length of x must match length of t
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='measures', x=t[:-1])

    # repeated values in t fail when x is specified
    t2 = t.copy()
    t2[1] = t2[0]
    with pytest.raises(ValueError):
        bayesian_blocks(t2, fitness='measures', x=t)

    # sigma must be broadcastable with x
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='measures', x=t, sigma=t[:-1])
Пример #32
0
def hist(x, bins=10, range=None, *args, **kwargs):
    """Enhanced histogram

    This is a histogram function that enables the use of more sophisticated
    algorithms for determining bins.  Aside from the `bins` argument allowing
    a string specified how bins are computed, the parameters are the same
    as pylab.hist().

    Parameters
    ----------
    x : array_like
        array of data to be histogrammed

    bins : int or list or str (optional)
        If bins is a string, then it must be one of:
        'blocks' : use bayesian blocks for dynamic bin widths
        'knuth' : use Knuth's rule to determine bins
        'scott' : use Scott's rule to determine bins
        'freedman' : use the Freedman-diaconis rule to determine bins

    range : tuple or None (optional)
        the minimum and maximum range for the histogram.  If not specified,
        it will be (x.min(), x.max())

    ax : Axes instance (optional)
        specify the Axes on which to draw the histogram.  If not specified,
        then the current active axes will be used.

    **kwargs :
        other keyword arguments are described in pylab.hist().
    """
    if isinstance(bins, str) and "weights" in kwargs:
        warnings.warn("weights argument is not supported: it will be ignored.")
        kwargs.pop('weights')

    x = np.asarray(x)

    if 'ax' in kwargs:
        ax = kwargs['ax']
        del kwargs['ax']
    else:
        # import here so that testing with Agg will work
        from matplotlib import pyplot as plt
        ax = plt.gca()

    # if range is specified, we need to truncate the data for
    # the bin-finding routines
    if (range is not None and (bins in ['blocks',
                                        'knuth', 'knuths',
                                        'scott', 'scotts',
                                        'freedman', 'freedmans'])):
        x = x[(x >= range[0]) & (x <= range[1])]

    if bins in ['blocks']:
        bins = bayesian_blocks(x)
    elif bins in ['knuth', 'knuths']:
        dx, bins = knuth_bin_width(x, True)
    elif bins in ['scott', 'scotts']:
        dx, bins = scott_bin_width(x, True)
    elif bins in ['freedman', 'freedmans']:
        dx, bins = freedman_bin_width(x, True)
    elif isinstance(bins, str):
        raise ValueError("unrecognized bin code: '{}'".format(bins))

    return ax.hist(x, bins, range, **kwargs)
def describe_numeric_1d(series: pd.Series, series_description: dict) -> dict:
    """Describe a numeric series.

    Args:
        series: The Series to describe.
        series_description: The dict containing the series description so far.

    Returns:
        A dict containing calculated series description values.

    Notes:
        When 'bins_type' is set to 'bayesian_blocks', astropy.stats.bayesian_blocks is used to determine the number of
        bins. Read the docs:
        https://docs.astropy.org/en/stable/visualization/histogram.html
        https://docs.astropy.org/en/stable/api/astropy.stats.bayesian_blocks.html

        This method might print warnings, which we suppress.
        https://github.com/astropy/astropy/issues/4927
    """
    quantiles = config["vars"]["num"]["quantiles"].get(list)

    stats = {
        "mean": series.mean(),
        "std": series.std(),
        "variance": series.var(),
        "min": series.min(),
        "max": series.max(),
        "kurtosis": series.kurt(),
        "skewness": series.skew(),
        "sum": series.sum(),
        "mad": series.mad(),
        "n_zeros": (len(series) - np.count_nonzero(series)),
        "histogramdata": series,
    }

    stats["range"] = stats["max"] - stats["min"]
    stats.update(
        {
            "{:.0%}".format(percentile): value
            for percentile, value in series.quantile(quantiles).to_dict().items()
        }
    )
    stats["iqr"] = stats["75%"] - stats["25%"]
    stats["cv"] = stats["std"] / stats["mean"] if stats["mean"] else np.NaN
    stats["p_zeros"] = float(stats["n_zeros"]) / len(series)

    bins = config["plot"]["histogram"]["bins"].get(int)
    # Bins should never be larger than the number of distinct values
    bins = min(series_description["distinct_count_with_nan"], bins)
    stats["histogram_bins"] = bins

    bayesian_blocks_bins = config["plot"]["histogram"]["bayesian_blocks_bins"].get(bool)
    if bayesian_blocks_bins:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            ret = bayesian_blocks(stats["histogramdata"])

            # Sanity check
            if not np.isnan(ret).any() and ret.size > 1:
                stats["histogram_bins_bayesian_blocks"] = ret

    return stats
Пример #34
0
    def _MakeTimeBins(self):
        from astropy.stats import bayesian_blocks
        from astropy.table import Table

        evtfile = str("%s/AppertureLightCurve/%s_%s_MkTime.fits" %
                      (self.folder, self.srcname, self.Tag))
        evtlist = Table.read(evtfile, hdu='EVENTS')['TIME'].data
        expfile = str("%s/AppertureLightCurve/%s_%s_applc.fits" %
                      (self.folder, self.srcname, self.Tag))
        expbins = Table.read(expfile, hdu='RATE')

        meanRate = float(len(evtlist)) / float(self.tmax - self.tmin)
        print("Mean photon rate %s s^-1" % meanRate)
        print("Mean photon rate %s day^-1" % (meanRate * 3600. * 24))

        #Sort table in function of time just to be sure
        evtlist.sort()
        evtlistExpCorrected = np.empty_like(evtlist)
        expbins[expbins.argsort('TIME')]

        # Calculate relative exposure time and time correction associated for each exposure bins
        j = 0
        surfaceFermi = 10000  # in cm^2
        timeCorrection = np.zeros((len(expbins) + 1, 2))
        exposure = np.zeros(len(expbins))
        timeCorrection[j, 0] = expbins['TIME'][j] - 0.5 * expbins['TIMEDEL'][j]
        timeCorrection[j, 1] = 0.
        exposure[j] = expbins['EXPOSURE'][j] / (expbins['TIMEDEL'][j] *
                                                surfaceFermi)
        for j in range(1, len(expbins)):
            exposure[j] = expbins['EXPOSURE'][j] / (expbins['TIMEDEL'][j] *
                                                    surfaceFermi)
            timeCorrection[
                j, 0] = expbins['TIME'][j] - 0.5 * expbins['TIMEDEL'][j]
            timeCorrection[j, 1] = timeCorrection[
                j - 1, 1] + exposure[j - 1] * expbins['TIMEDEL'][j - 1]
        timeCorrection[j + 1,
                       0] = expbins['TIME'][j] + 0.5 * expbins['TIMEDEL'][j]
        timeCorrection[
            j + 1,
            1] = timeCorrection[j, 1] + exposure[j] * expbins['TIMEDEL'][j]

        #Apply exposure time correction
        evtlistcorrected = np.interp(evtlist, timeCorrection[:, 0],
                                     timeCorrection[:, 1])
        meanRateCorrected = float(
            len(evtlistcorrected)) / float(timeCorrection[-1, 1] -
                                           timeCorrection[0, 1])
        print("Mean photon rate exposure corrected %s s^-1" %
              meanRateCorrected)
        print("Mean photon rate exposure corrected %s day^-1" %
              (meanRateCorrected * 3600. * 24))

        #Calculate bayesian block
        edgesCorrected = bayesian_blocks(evtlistcorrected,
                                         fitness='events',
                                         p0=self.p0)
        edgesCorrected[0] = timeCorrection[0, 1]
        edgesCorrected[-1] = timeCorrection[-1, 1]

        #Calculate bin event for apperture photometry
        count, tmp = np.histogram(evtlistcorrected, bins=edgesCorrected)
        errcount = np.sqrt(count)

        #Correct edges from exposure
        edges = np.interp(edgesCorrected, timeCorrection[:, 1],
                          timeCorrection[:, 0])
        edges[0] = self.tmin
        edges[-1] = self.tmax

        #Calculate apperture phtometry flux
        flux = np.array(count / (edgesCorrected[1:] - edgesCorrected[:-1]))
        errflux = np.array(errcount /
                           (edgesCorrected[1:] - edgesCorrected[:-1]))

        self.Nbin = len(edges) - 1
        self.time_array = np.zeros(self.Nbin * 2)
        self.gtifile = []
        for i in xrange(self.Nbin):
            self.time_array[2 * i] = edges[i]
            self.time_array[2 * i + 1] = edges[i + 1]

        self.info("Running LC with " + str(self.Nbin) + " bins")
        for i in xrange(self.Nbin):
            print "Bin ", i, " Start=", self.time_array[
                2 * i], " Stop=", self.time_array[
                    2 * i + 1], 'Apperture Photometry=', flux[
                        i], '+/-', errflux[i], 'ph.s^-1'

        #Dump into ascii
        bbfile = str("%s/BayesianBlocks/%s_bb.dat" %
                     (self.folder, self.srcname))
        np.savetxt(bbfile,
                   np.transpose(
                       np.array([
                           np.array(edges[:-1]),
                           np.array(edges[1:]),
                           np.array(edgesCorrected[1:] - edgesCorrected[:-1]),
                           np.array(count)
                       ])),
                   header='tstart tend dt_exposure_corrected count')

        #Load apperture flux point
        time_pt, dTime_pt, flux_pt, errflux_pt = self.readApperturePhotometryPoint(
        )

        plt.figure()
        plt.xlabel(r"Time (s)")
        plt.ylabel(r"${\rm Flux\ (photon\ cm^{-2}\ s^{-1})}$")

        plot_bayesianblocks(np.array(edges[:-1]), np.array(edges[1:]),
                            flux / surfaceFermi, errflux / surfaceFermi,
                            errflux / surfaceFermi,
                            np.zeros(flux.shape).astype(np.bool))
        plt.errorbar(time_pt,
                     flux_pt / surfaceFermi,
                     yerr=errflux_pt / surfaceFermi,
                     xerr=dTime_pt / 2.,
                     color='k',
                     ls='None')

        plt.ylim(ymin=max(plt.ylim()[0],
                          np.percentile(flux / surfaceFermi, 1) * 0.1),
                 ymax=min(plt.ylim()[1],
                          np.percentile(flux / surfaceFermi, 99) * 2.0))
        plt.xlim(xmin=max(
            plt.xlim()[0], 1.02 * min(np.array(edges[:-1])) -
            0.02 * max(np.array(edges[1:]))),
                 xmax=min(
                     plt.xlim()[1], 1.02 * max(np.array(edges[1:])) -
                     0.02 * min(np.array(edges[:-1]))))
        # Move the offset to the axis label
        ax = plt.gca()
        ax.get_yaxis().get_major_formatter().set_useOffset(False)
        offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
        if (offset_factor != 0):
            ax.set_yticklabels([float(round(k,5)) \
              for k in ax.get_yticks()*10**(-offset_factor)])
            ax.yaxis.set_label_text(ax.yaxis.get_label_text() +\
              r" [${\times 10^{%d}}$]" %offset_factor)

        # Secondary axis with MJD
        mjdaxis = ax.twiny()
        mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
        mjdaxis.set_xlabel(r"Time (MJD)")
        mjdaxis.xaxis.set_major_formatter(
            matplotlib.ticker.ScalarFormatter(useOffset=False))
        plt.setp(mjdaxis.xaxis.get_majorticklabels(), rotation=15)
        plt.tight_layout()

        LcOutPath = self.LCfolder + self.config['target']['name']
        plt.savefig(LcOutPath + "_AP.png",
                    dpi=150,
                    facecolor='w',
                    edgecolor='w',
                    orientation='portrait',
                    papertype=None,
                    format=None,
                    transparent=False,
                    bbox_inches=None,
                    pad_inches=0.1,
                    frameon=None)
Пример #35
0
def light_curve_analysis(file, NaI, BGO, good_ni, good_bi, txtdir, plotsave,
                         plotsave1):
    dt = 0.064
    maxx = 0
    new_c = {}
    if os.path.exists(txtdir) == False:
        os.makedirs(txtdir)
    myfile.printdatatofile(txtdir + 'N_good_ni.txt', data=[good_ni])
    myfile.printdatatofile(txtdir + 'N_good_bi.txt', data=[good_bi])
    for ni in NaI:
        if file[ni] is not None:
            hl = file[ni]
            trigtime = hl[0].header['TRIGTIME']
            time = hl[2].data.field(0)
            ch = hl[2].data.field(1)
            ch_n = hl[1].data.field(0)
            e1 = hl[1].data.field(1)
            e2 = hl[1].data.field(2)
            t = time - trigtime
            ch_index = np.where((ch >= 3) & (ch < 123))[0]
            ch_n1 = np.arange(3, 123, 1, dtype=int)
            t = t[ch_index]
            ch = ch[ch_index]
            bins = np.arange(t[0], t[-1], dt)
            bin_n, bin_edges = np.histogram(t, bins=bins)
            t_c = (bin_edges[1:] + bin_edges[:-1]) * 0.5
            rate = bin_n / dt
            t_c, cs_rate, bs_rate = TD_baseline(t_c, rate)
            new_c[ni] = [t_c, rate, bs_rate]
            if ni in good_ni:
                if rate.max() > maxx:
                    maxx = rate.max()
                rate_sm = cs_rate + bs_rate.mean()
                bin_n_sm = np.round(rate_sm * dt)
                edges = bayesian_blocks(t_c,
                                        bin_n_sm,
                                        fitness='events',
                                        p0=0.05)
                result = background_correction(t_c, rate_sm, edges, degree=7)
                startedges, stopedges = get_bayesian_duration(result, sigma=3)
                new_c[ni + 'bb'] = [startedges, stopedges]
                if len(startedges) > 0:
                    if os.path.exists(txtdir) == False:
                        os.makedirs(txtdir)
                    myfile.printdatatofile(txtdir + 'Z_' + ni +
                                           '_bayesian_duration.txt',
                                           data=[startedges, stopedges],
                                           format=['.5f', '.5f'])
                    flash_start, flash_stop = get_bayesian_flash(
                        result, startedges, stopedges)
                    myfile.printdatatofile(txtdir + 'Y_' + ni +
                                           '_bayesian_flash.txt',
                                           data=[flash_start, flash_stop],
                                           format=['.5f', '.5f'])
                    '''
					txx_result = get_bayesian_txx(result,startedges,stopedges,txx = 0.9,it = 400,lamd = 200.)
					myplt = Plot(txx_result)
					plt.title(ni)
					myplt.plot_light_curve(sigma = 5)
					plt.xlim(t[0],t[-1])
					plt.savefig(txtdir + 'X_'+ni+'_bayesian_txx.png')
					plt.close()
					print('***********',len(txx_result['txx']),len(txx_result['txx_list']))
					for ij in range(len(txx_result['txx'])):
						plt.title(ni)
						myplt.plot_distribution('90',num = ij)
						plt.savefig(txtdir + 'W_'+ni+'_distribution_'+str(ij)+'.png')
						plt.close()
					plt.figure(figsize = (10,10))
					plt.subplot(2,1,1)
					plt.title(ni)
					myplt.plot_Txx1('90')
					plt.xlim(t[0],t[-1])
					plt.subplot(2,1,2)
					myplt.plot_Txx2('90')
					plt.xlim(t[0],t[-1])
					plt.savefig(txtdir + 'U_'+ni+'_txx.png')
					plt.close()
					save_result(txx_result,txtdir+'V_'+ni+'_distribution_T90.csv')
					'''
                if (ni == good_ni[0]):
                    ni_event = Separate_source(t, ch, ch_n1, WT=False)
                    s_t, s_ch = ni_event.get_S_t_and_ch()
                    new_t, new_energy = ch_to_energy(s_t, s_ch, ch_n, e1, e2)
                    fig = plt.figure(figsize=(20, 20))
                    ax1 = fig.add_subplot(2, 2, 1)
                    ax1.set_title('light curve', size=20)
                    ax1.step(t_c, rate, color='k', label=ni)
                    ax1.set_xlabel('time (s)', size=20)
                    ax1.set_ylabel('counts rate /s', size=20)
                    ax1.set_xlim(t[0], t[-1])
                    ax1.legend()
                    ax2 = fig.add_subplot(2, 2, 2)
                    ax2.set_title('point map', size=20)
                    ax2.plot(new_t, new_energy, ',', color='k')
                    ax2.set_xlabel('time (s)', size=20)
                    ax2.set_ylabel('energy (kev)', size=20)
                    ax2.set_yscale('log')
                    ax2.set_xlim(t[0], t[-1])
                    ax2.set_ylim(8, 9.1e2)
                    ax3 = fig.add_subplot(2, 2, 3)
                    ax3.step(t_c, rate, color='k', label=ni)
                    if len(startedges) > 0:
                        for i in range(len(startedges)):
                            ax3.axvline(x=startedges[i], color='r')
                            ax3.axvline(x=stopedges[i], color='g')
                    ax3.set_xlabel('time (s)', size=20)
                    ax3.set_ylabel('counts rate /s', size=20)
                    ax3.set_xlim(t[0], t[-1])
                    ax3.legend()
                    ax4 = fig.add_subplot(2, 2, 4)
                    ax4.plot(new_t, new_energy, ',', color='k')
                    if len(startedges) > 0:
                        for i in range(len(startedges)):
                            ax4.axvline(x=startedges[i], color='r')
                            ax4.axvline(x=stopedges[i], color='g')
                    ax4.set_xlabel('time (s)', size=20)
                    ax4.set_ylabel('energy (kev)', size=20)
                    ax4.set_yscale('log')
                    ax4.set_xlim(t[0], t[-1])
                    ax4.set_ylim(8, 9.1e2)
                    for k in plotsave:
                        dir_, file_ = os.path.split(k)
                        if os.path.exists(dir_) == False:
                            os.makedirs(dir_)
                        fig.savefig(k)
                    plt.close(fig)
            else:
                new_c[ni + 'bb'] = None
        else:
            new_c[ni] = None
            new_c[ni + 'bb'] = None
    for bi in BGO:
        if file[bi] is not None:
            hl = file[bi]
            trigtime = hl[0].header['TRIGTIME']
            time = hl[2].data.field(0)
            t = time - trigtime
            bins = np.arange(t[0], t[-1], dt)
            bin_n, bin_edges = np.histogram(t, bins=bins)
            t_c = (bin_edges[1:] + bin_edges[:-1]) * 0.5
            rate = bin_n / dt
            t_c, cs_rate, bs_rate = TD_baseline(t_c, rate)
            new_c[bi] = [t_c, rate, bs_rate]
            if bi in good_bi:
                rate_sm = cs_rate + bs_rate.mean()
                bin_n_sm = np.round(rate_sm * dt)
                edges = bayesian_blocks(t_c,
                                        bin_n_sm,
                                        fitness='events',
                                        gamma=np.exp(-5))
                result = background_correction(t_c, rate_sm, edges, degree=7)
                startedges, stopedges = get_bayesian_duration(result, sigma=5)
                if len(startedges) > 0:
                    if os.path.exists(txtdir) == False:
                        os.makedirs(txtdir)
                    myfile.printdatatofile(txtdir + 'Z_' + bi +
                                           '_bayesian_duration.txt',
                                           data=[startedges, stopedges],
                                           format=['.5f', '.5f'])
        else:
            new_c[bi] = None
    plt.figure(figsize=(30, 60))
    plt.subplots_adjust(left=0.1, right=0.9, top=0.95, bottom=0.05)
    for index, value in enumerate(NaI):
        plt.subplot(14, 1, index + 1)
        if new_c[value] is not None:
            tm, rate, bs = new_c[value]
            plt.plot(tm, rate, color='k', label=value)
            plt.plot(tm, bs, color='r', label='back')
            if new_c[value + 'bb'] is not None:
                started, stoped = new_c[value + 'bb']
                for kk in range(len(started)):
                    plt.axvline(x=started[kk], color='r')
                    plt.axvline(x=stoped[kk], color='g')
            plt.ylabel('the count rate (N/s)')
            plt.xlim(tm[0], tm[-1])
            plt.ylim(0, maxx * 0.5 + maxx)
            plt.legend(loc='upper left')
    for index, value in enumerate(BGO):
        plt.subplot(14, 1, index + 13)
        if new_c[value] is not None:
            tm, rate, bs = new_c[value]
            plt.plot(tm, rate, color='k', label=value)
            plt.plot(tm, bs, color='r', label='back')
            plt.ylabel('the count rate (N/s)')
            plt.xlim(tm[0], tm[-1])
            plt.ylim(0, maxx * 0.5 + maxx)
            plt.legend(loc='upper left')
    for vv in plotsave1:
        dir_, file_ = os.path.split(vv)
        if os.path.exists(dir_) == False:
            os.makedirs(dir_)
        plt.savefig(vv)
    plt.close()
Пример #36
0
def read_times(dir_list):
    """Reads xrt data from given directory list and appends all the times"""
    time = []
    with open(dir_list, 'r') as reader:
        for dire in reader.readlines():
            fits_name = "sw" + dire[:-2] + "xpcw3po_cl.evt.gz"
            path = "./" + dire[:-1] + "xrt/event/" + fits_name
            with fits.open(path) as hdul:
                time.append(hdul['EVENTS'].data["Time"])

    return np.concatenate(time)


time = read_times(dir_list)

edges = bayesian_blocks(time, fitness='events', p0=0.01)
edges1 = bayesian_blocks(time, fitness='event')
# edges = bayesian_blocks(t, fitness='events')
# edges = bayesian_blocks(t, x,fitness='measures')
# edges1 = bayesian_blocks(t, x,sigma=s,fitness='measures')
# edges2 = bayesian_blocks(t, x,sigma=s,fitness='measures',p0=0.01)

# plt.scatter(range(len(edges)),edges)
# Out[19]: <matplotlib.collections.PathCollection at 0x7f303bb3c250>

# plt.scatter(range(len(edges1)),edges1)
# Out[20]: <matplotlib.collections.PathCollection at 0x7f30380653d0>

# plt.scatter(range(len(edges2)),edges2)
# Out[21]: <matplotlib.collections.PathCollection at 0x7f303806c760>
Пример #37
0
def test_errors():
    rng = np.random.RandomState(0)
    t = rng.rand(100)

    # x must be integer or None for events
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='events', x=t)

    # x must be binary for regular events
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='regular_events', x=10 * t, dt=1)

    # x must be specified for measures
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='measures')

    # sigma cannot be specified without x
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='events', sigma=0.5)

    # length of x must match length of t
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='measures', x=t[:-1])

    # repeated values in t fail when x is specified
    t2 = t.copy()
    t2[1] = t2[0]
    with pytest.raises(ValueError):
        bayesian_blocks(t2, fitness='measures', x=t)

    # sigma must be broadcastable with x
    with pytest.raises(ValueError):
        bayesian_blocks(t, fitness='measures', x=t, sigma=t[:-1])
Пример #38
0
        line = "spec" + str(i) + " " + str(tstart) + "-" + str(tstop)
        f.write(line + "\n")
    f.close()


lc_filename = "curve_mod.qdp"
bin_textfile = "tbin_bb.txt"
modes, data = Read_lc_qdp(lc_filename)
PC_data = np.array(data[-1], dtype=np.float32)
t = PC_data[:, 0]
x = PC_data[:, 3]
del_t = np.diff(t)
s = (PC_data[:, 4] - PC_data[:, 5]) / 2

# edges = bayesian_blocks(t, fitness='events')
# edges = bayesian_blocks(t, x,fitness='measures')
# edges1 = bayesian_blocks(t, x,sigma=s,fitness='measures')
edges = bayesian_blocks(t, x, sigma=s, fitness='measures', p0=0.01)

CreateBinFile(edges, bin_textfile)

# plt.scatter(range(len(edges)),edges)
# Out[19]: <matplotlib.collections.PathCollection at 0x7f303bb3c250>

# plt.scatter(range(len(edges1)),edges1)
# Out[20]: <matplotlib.collections.PathCollection at 0x7f30380653d0>

# plt.scatter(range(len(edges2)),edges2)
# Out[21]: <matplotlib.collections.PathCollection at 0x7f303806c760>

# plt.yscale("log")
Пример #39
0
    time = data[2].data.field(0)
    ch = data[2].data.field(1)
    t = time - trigtime
    ch_n = data[1].data.field(0)
    e1 = data[1].data.field(1)
    e2 = data[1].data.field(2)
    #t = t[np.where((ch>=3) & (ch <=109))]
    #ch = ch[np.where((ch>=3) & (ch <=109))]

    start_edges, stop_edges = get_pulse_duration(t)
    dt = 1
    edges0 = np.arange(start_edges - 2, stop_edges + 2 + dt, dt)
    bin_n, edges0 = np.histogram(t, bins=edges0)
    bin_c = (edges0[1:] + edges0[:-1]) * 0.5
    edges = bayesian_blocks(bin_c, np.rint(bin_n), fitness='events',
                            p0=0.001)[1:-1]  #从第二到倒数第二个。

    slic_start = edges[:-1]
    slic_top = edges[1:]

    block_time = []
    block_time_err = []
    Ep = []
    Ep_err1 = []
    Ep_err2 = []
    for dete_n in dete:
        make_phaI(name,
                  dete_n,
                  sampledir,
                  save_dir,
                  slic_start,