Пример #1
0
def helper_clip(f, unit1, unit2, unit3):
    # Treat the array being clipped as primary.
    converters = [None]
    if unit1 is None:
        result_unit = dimensionless_unscaled
        try:
            converters += [(None if unit is None else
                            get_converter(unit, dimensionless_unscaled))
                           for unit in (unit2, unit3)]
        except UnitsError:
            raise UnitConversionError(
                "Can only apply '{}' function to quantities with "
                "compatible dimensions".format(f.__name__))

    else:
        result_unit = unit1
        for unit in unit2, unit3:
            try:
                converter = get_converter(_d(unit), result_unit)
            except UnitsError:
                if unit is None:
                    # special case: OK if unitless number is zero, inf, nan
                    converters.append(False)
                else:
                    raise UnitConversionError(
                        "Can only apply '{}' function to quantities with "
                        "compatible dimensions".format(f.__name__))
            else:
                converters.append(converter)

    return converters, result_unit
Пример #2
0
 def quantity(self, val):
     val = u.Quantity(val)
     try:
         val.to(self.unit)
         self.value = val.value
         self.unit = val.unit
     except UnitConversionError:
         raise UnitConversionError(
             "{0} parameter must have units homogeneous with {1}".format(
                 self.name, self.unit))
Пример #3
0
def get_converters_and_unit(f, unit1, unit2):
    converters = [None, None]
    # By default, we try adjusting unit2 to unit1, so that the result will
    # be unit1 as well. But if there is no second unit, we have to try
    # adjusting unit1 (to dimensionless, see below).
    if unit2 is None:
        if unit1 is None:
            # No units for any input -- e.g., np.add(a1, a2, out=q)
            return converters, dimensionless_unscaled
        changeable = 0
        # swap units.
        unit2 = unit1
        unit1 = None
    elif unit2 is unit1:
        # ensure identical units is fast ("==" is slow, so avoid that).
        return converters, unit1
    else:
        changeable = 1

    # Try to get a converter from unit2 to unit1.
    if unit1 is None:
        try:
            converters[changeable] = get_converter(unit2,
                                                   dimensionless_unscaled)
        except UnitsError:
            # special case: would be OK if unitless number is zero, inf, nan
            converters[1-changeable] = False
            return converters, unit2
        else:
            return converters, dimensionless_unscaled
    else:
        try:
            converters[changeable] = get_converter(unit2, unit1)
        except UnitsError:
            raise UnitConversionError(
                "Can only apply '{0}' function to quantities "
                "with compatible dimensions"
                .format(f.__name__))

        return converters, unit1
Пример #4
0
def converters_and_unit(function, method, *args):
    """Determine the required converters and the unit of the ufunc result.

    Converters are functions required to convert to a ufunc's expected unit,
    e.g., radian for np.sin; or to ensure units of two inputs are consistent,
    e.g., for np.add.  In these examples, the unit of the result would be
    dimensionless_unscaled for np.sin, and the same consistent unit for np.add.

    Parameters
    ----------
    function : `~numpy.ufunc`
        Numpy universal function
    method : str
        Method with which the function is evaluated, e.g.,
        '__call__', 'reduce', etc.
    *args : Quantity or other ndarray subclass
        Input arguments to the function

    Raises
    ------
    TypeError : when the specified function cannot be used with Quantities
        (e.g., np.logical_or), or when the routine does not know how to handle
        the specified function (in which case an issue should be raised on
        https://github.com/astropy/astropy).
    UnitTypeError : when the conversion to the required (or consistent) units
        is not possible.
    """

    # Check whether we support this ufunc, by getting the helper function
    # (defined in helpers) which returns a list of function(s) that convert the
    # input(s) to the unit required for the ufunc, as well as the unit the
    # result will have (a tuple of units if there are multiple outputs).
    ufunc_helper = UFUNC_HELPERS[function]

    if method == '__call__' or (method == 'outer' and function.nin == 2):
        # Find out the units of the arguments passed to the ufunc; usually,
        # at least one is a quantity, but for two-argument ufuncs, the second
        # could also be a Numpy array, etc.  These are given unit=None.
        units = [getattr(arg, 'unit', None) for arg in args]

        # Determine possible conversion functions, and the result unit.
        converters, result_unit = ufunc_helper(function, *units)

        if any(converter is False for converter in converters):
            # for multi-argument ufuncs with a quantity and a non-quantity,
            # the quantity normally needs to be dimensionless, *except*
            # if the non-quantity can have arbitrary unit, i.e., when it
            # is all zero, infinity or NaN.  In that case, the non-quantity
            # can just have the unit of the quantity
            # (this allows, e.g., `q > 0.` independent of unit)
            try:
                # Don't fold this loop in the test above: this rare case
                # should not make the common case slower.
                for i, converter in enumerate(converters):
                    if converter is not False:
                        continue
                    if can_have_arbitrary_unit(args[i]):
                        converters[i] = None
                    else:
                        raise UnitConversionError(
                            "Can only apply '{}' function to "
                            "dimensionless quantities when other "
                            "argument is not a quantity (unless the "
                            "latter is all zero/infinity/nan)".format(
                                function.__name__))
            except TypeError:
                # _can_have_arbitrary_unit failed: arg could not be compared
                # with zero or checked to be finite. Then, ufunc will fail too.
                raise TypeError(
                    "Unsupported operand type(s) for ufunc {}: "
                    "'{}'".format(
                        function.__name__,
                        ','.join([arg.__class__.__name__ for arg in args])))

        # In the case of np.power and np.float_power, the unit itself needs to
        # be modified by an amount that depends on one of the input values,
        # so we need to treat this as a special case.
        # TODO: find a better way to deal with this.
        if result_unit is False:
            if units[0] is None or units[0] == dimensionless_unscaled:
                result_unit = dimensionless_unscaled
            else:
                if units[1] is None:
                    p = args[1]
                else:
                    p = args[1].to(dimensionless_unscaled).value

                try:
                    result_unit = units[0]**p
                except ValueError as exc:
                    # Changing the unit does not work for, e.g., array-shaped
                    # power, but this is OK if we're (scaled) dimensionless.
                    try:
                        converters[0] = units[0]._get_converter(
                            dimensionless_unscaled)
                    except UnitConversionError:
                        raise exc
                    else:
                        result_unit = dimensionless_unscaled

    else:  # methods for which the unit should stay the same
        nin = function.nin
        unit = getattr(args[0], 'unit', None)
        if method == 'at' and nin <= 2:
            if nin == 1:
                units = [unit]
            else:
                units = [unit, getattr(args[2], 'unit', None)]

            converters, result_unit = ufunc_helper(function, *units)

            # ensure there is no 'converter' for indices (2nd argument)
            converters.insert(1, None)

        elif method in {'reduce', 'accumulate', 'reduceat'} and nin == 2:
            converters, result_unit = ufunc_helper(function, unit, unit)
            converters = converters[:1]
            if method == 'reduceat':
                # add 'scale' for indices (2nd argument)
                converters += [None]

        else:
            if method in {'reduce', 'accumulate', 'reduceat', 'outer'
                          } and nin != 2:
                raise ValueError(
                    f"{method} only supported for binary functions")

            raise TypeError(
                "Unexpected ufunc method {}.  If this should "
                "work, please raise an issue on"
                "https://github.com/astropy/astropy".format(method))

        # for all but __call__ method, scaling is not allowed
        if unit is not None and result_unit is None:
            raise TypeError("Cannot use '{1}' method on ufunc {0} with a "
                            "Quantity instance as the result is not a "
                            "Quantity.".format(function.__name__, method))

        if (converters[0] is not None
                or (unit is not None and unit is not result_unit and
                    (not result_unit.is_equivalent(unit)
                     or result_unit.to(unit) != 1.))):
            # NOTE: this cannot be the more logical UnitTypeError, since
            # then things like np.cumprod will not longer fail (they check
            # for TypeError).
            raise UnitsError(
                "Cannot use '{1}' method on ufunc {0} with a "
                "Quantity instance as it would change the unit.".format(
                    function.__name__, method))

    return converters, result_unit