Пример #1
0
def atomistic_non_protein_non_solvent(cg_residue_type,cg_residues):
    atomistic_fragments={}  #### residue dictionary
#### run through every residue in a particular residue type
    residue_type={}
    residue_type_mass={}
    for cg_resid, cg_residue in enumerate(cg_residues):
        atomistic_fragments[cg_resid]={}
        frag_location=at_mod.fragment_location(cg_residue_type) ### get fragment location from database
        residue_type[cg_residue_type], residue_type_mass[cg_residue_type] = at_mod.get_atomistic(cg_residue_type, frag_location)
        connect = at_mod.connection(residue_type[cg_residue_type])
        for group in residue_type[cg_residue_type]:
            # print(residue_type[cg_residue_type][group], '\n')
            center, at_frag_centers, cg_frag_centers, group_fit = at_mod.rigid_fit(residue_type[cg_residue_type][group], residue_type_mass[cg_residue_type], cg_residue, cg_residues[cg_residue])
            at_connect, cg_connect = at_mod.connectivity(cg_residues[cg_residue], connect, at_frag_centers, cg_frag_centers, group_fit, group)

            if len(at_connect) == len(cg_connect):
                xyz_rot_apply=at_mod.rotate(np.array(at_connect)-center, np.array(cg_connect)-center, False)
            else:
                print('atom connections: '+str(len(at_connections))+' does not equal CG connections: '+str(len(cg_connections)))
                sys.exit('residue number: '+str(residue_number)+', residue type: '+str(resname)+', group: '+group)

            for bead in group_fit:
                for atom in group_fit[bead]:
                    group_fit[bead][atom]['coord'] = at_mod.rotate_atom(group_fit[bead][atom]['coord'], center, xyz_rot_apply)   
                    atom_new = group_fit[bead][atom].copy()
                    atomistic_fragments[cg_resid][atom] = atom_new
    return atomistic_fragments   
Пример #2
0
def at_np_solvent(cg_residue_type,cg_residues):   
    atomistic_fragments={}  #### residue dictionary
#### run through every residue in a particular residue type
    residue_type={}
    residue_type_mass={}
    atomistic_fragments_list = []
    for cg_resid, cg_residue in enumerate(cg_residues):
        atomistic_fragments[cg_resid]={}
        frag_location=gen.fragment_location(cg_residue_type) ### get fragment location from database
        residue_type[cg_residue_type], residue_type_mass[cg_residue_type] = at_mod.get_atomistic(frag_location, cg_residue_type)
        for group in residue_type[cg_residue_type]:
            center, at_frag_centers, cg_frag_centers, group_fit = at_mod.rigid_fit(residue_type[cg_residue_type][group], 
                                                                                    residue_type_mass[cg_residue_type], 
                                                                                    cg_residue, cg_residues[cg_residue])
            at_connect, cg_connect = at_mod.connectivity(cg_residues[cg_residue], at_frag_centers, cg_frag_centers, group_fit, group)
            xyz_rot_apply=at_mod.get_rotation(cg_connect, at_connect, center, cg_residue_type, group, cg_resid)

            atomistic_fragments = at_mod.apply_rotations(atomistic_fragments,cg_resid, group_fit, center, xyz_rot_apply)
            
        if cg_residue_type in g_var.np_residues:
            atomistic_fragments[cg_resid] = at_mod.check_hydrogens(atomistic_fragments[cg_resid])
        atomistic_fragments_list, sol_p_bead =  sort_np_dictionary(atomistic_fragments[cg_resid], atomistic_fragments_list)
    if cg_residue_type in g_var.sol_residues:
        return atomistic_fragments_list, sol_p_bead*len(cg_residues)
    else:
        return atomistic_fragments_list, len(atomistic_fragments)
Пример #3
0
def build_multi_residue_atomistic_system(cg_residues, sys_type):   
#### initisation of counters
    chain_count=0
    coord_atomistic={}
    g_var.seq_cg={sys_type:{}}
    g_var.ter_res={sys_type:{}}
    gen.mkdir_directory(g_var.working_dir+sys_type)  ### make and change to protein directory
#### for each residue in protein
    residue_type={}
    residue_type_mass={}
    new_chain = True
    for cg_residue_id, residue_number in enumerate(cg_residues[sys_type]):

        if np.round((cg_residue_id/len(cg_residues[sys_type]))*100,2).is_integer():
            print('Converting de_novo '+sys_type+': ',np.round((cg_residue_id/len(cg_residues[sys_type]))*100,2),'%', end='\r')
        resname = cg_residues[sys_type][residue_number][next(iter(cg_residues[sys_type][residue_number]))]['residue_name']
        if new_chain: 
            if chain_count not in coord_atomistic:
                if sys_type == 'PROTEIN':
                    g_var.backbone_coords[chain_count]=[]
                coord_atomistic[chain_count]={}
                g_var.seq_cg[sys_type][chain_count]=[]
                g_var.ter_res[sys_type][chain_count]=[resname, False]
            new_chain = False
        coord_atomistic[chain_count][residue_number]={}
        frag_location=gen.fragment_location(resname) ### get fragment location from database
        residue_type[resname], residue_type_mass[resname] = at_mod.get_atomistic(frag_location)
        g_var.seq_cg[sys_type] = add_to_sequence(g_var.seq_cg[sys_type], resname, chain_count)
        new_chain = False
        for group in residue_type[resname]:
            for key in list(residue_type[resname][group].keys()):
                if key not in cg_residues[sys_type][residue_number]:
                    del residue_type[resname][group][key]
            if len(residue_type[resname][group]) > 0:
                center, at_frag_centers, cg_frag_centers, group_fit = at_mod.rigid_fit(residue_type[resname][group], residue_type_mass[resname], residue_number, cg_residues[sys_type][residue_number])
                at_connect, cg_connect = at_mod.connectivity(cg_residues[sys_type][residue_number], at_frag_centers, cg_frag_centers, group_fit, group)
                for group_bead in group_fit:
                    if group_bead in g_var.res_top[resname]['CONNECT']:
                        at_connect, cg_connect, new_chain = at_mod.BB_connectivity(at_connect,cg_connect, cg_residues[sys_type], group_fit[group_bead], residue_number, group_bead)
                        if sys_type == 'PROTEIN':
                            g_var.backbone_coords[chain_count].append(np.append(cg_residues[sys_type][residue_number][group_bead]['coord'], 1)) 




                xyz_rot_apply = at_mod.get_rotation(cg_connect, at_connect, center, resname, group, residue_number)
                coord_atomistic[chain_count] = at_mod.apply_rotations(coord_atomistic[chain_count],residue_number, group_fit, center, xyz_rot_apply)
        if new_chain:
            g_var.ter_res[sys_type][chain_count][1] = resname
            chain_count+=1

    print('Completed initial conversion of '+sys_type+'\n')        
    g_var.system[sys_type]=chain_count
    if sys_type == 'PROTEIN':
        for chain in range(chain_count):
            g_var.skip_disul[chain]=False
    return coord_atomistic
Пример #4
0
def atomistic_non_protein_non_solvent(cg_residue_type, cg_residues):
    atomistic_fragments = {}  #### residue dictionary
    #### run through every residue in a particular residue type
    residue_type = {}
    residue_type_mass = {}
    if not os.path.exists(g_var.working_dir + cg_residue_type + '/' +
                          cg_residue_type + '_all.pdb'):
        for cg_resid, cg_residue in enumerate(cg_residues):
            atomistic_fragments[cg_resid] = {}
            frag_location = gen.fragment_location(
                cg_residue_type)  ### get fragment location from database
            residue_type[cg_residue_type], residue_type_mass[
                cg_residue_type] = at_mod.get_atomistic(frag_location)
            for group in residue_type[cg_residue_type]:
                center, at_frag_centers, cg_frag_centers, group_fit = at_mod.rigid_fit(
                    residue_type[cg_residue_type][group],
                    residue_type_mass[cg_residue_type], cg_residue,
                    cg_residues[cg_residue])
                at_connect, cg_connect = at_mod.connectivity(
                    cg_residues[cg_residue], at_frag_centers, cg_frag_centers,
                    group_fit, group)
                if len(at_connect) == len(cg_connect) and len(cg_connect) > 0:
                    try:
                        xyz_rot_apply = at_mod.kabsch_rotate(
                            np.array(at_connect) - center,
                            np.array(cg_connect) - center)
                    except BaseException:
                        sys.exit('There is a issue with residue: ' +
                                 cg_residue_type + ' in group: ' + str(group))
                else:
                    print('atom connections: ' + str(len(at_connect)) +
                          ' does not match CG connections: ' +
                          str(len(cg_connect)))
                    sys.exit('residue number: ' + str(cg_resid) +
                             ', residue type: ' + str(cg_residue_type) +
                             ', group: ' + group)
                for bead in group_fit:
                    for atom in group_fit[bead]:
                        group_fit[bead][atom]['coord'] = at_mod.rotate_atom(
                            group_fit[bead][atom]['coord'], center,
                            xyz_rot_apply)
                        atom_new = group_fit[bead][atom].copy()
                        atomistic_fragments[cg_resid][atom] = atom_new
        return atomistic_fragments, 0
    else:
        return atomistic_fragments, len(cg_residues)
Пример #5
0
def build_protein_atomistic_system(cg_residues, box_vec):
#### initisation of counters
    chain_count=0
    system={}
    backbone_coords={}
    backbone_coords[chain_count]=[]
    terminal={}
    terminal[chain_count]=[]
    coordinates_atomistic={}
    coordinates_atomistic[chain_count]={}
    sequence={}
    sequence[chain_count]=[]
    print('Converting Protein')
    gen.mkdir_directory(g_var.working_dir+'PROTEIN')  ### make and change to protein directory
#### for each residue in protein
    initial=True
    residue_type={}
    residue_type_mass={}
    for cg_residue_id, residue_number in enumerate(cg_residues):
        resname = cg_residues[residue_number][next(iter(cg_residues[residue_number]))]['residue_name']
        if cg_residue_id == 0:
            terminal[chain_count].append(f_loc.backbone[resname]['ter'])
        coordinates_atomistic[chain_count][residue_number]={}
        frag_location=at_mod.fragment_location(resname) ### get fragment location from database
        residue_type[resname], residue_type_mass[resname] = at_mod.get_atomistic(frag_location)
        for group in residue_type[resname]:
            center, at_frag_centers, cg_frag_centers, group_fit = at_mod.rigid_fit(residue_type[resname][group], residue_type_mass[resname], residue_number, cg_residues[residue_number])

            at_connect, cg_connect = at_mod.connectivity(cg_residues[residue_number], at_frag_centers, cg_frag_centers, group_fit, group)
            if 'BB' in group_fit:
                BB_connect = []
                for atom in group_fit['BB']:
                    if group_fit['BB'][atom]['atom'] == f_loc.backbone[resname]['N_ter']:
                        N_ter=atom
                    if group_fit['BB'][atom]['atom'] == f_loc.backbone[resname]['C_ter']:
                        C_ter=atom
                at_connect, cg_connect, new_chain = BB_connectivity(at_connect,cg_connect, cg_residues, group_fit['BB'], residue_number, N_ter, C_ter)
                sequence = at_mod.add_to_sequence(sequence, resname, chain_count)
                backbone_coords[chain_count].append(np.append(cg_residues[residue_number]['BB']['coord'], 1))

            if resname == 'CYS' and 'BB' not in group_fit:
                at_connect, cg_connect, disulphide, disul_at_info, disul_cg_info= find_closest_cysteine(at_connect, cg_connect, cg_residues, group_fit, residue_number)

            if len(at_connect) == len(cg_connect):
                xyz_rot_apply=at_mod.rotate(np.array(at_connect)-center, np.array(cg_connect)-center, False)
            else:
                print('atom connections: '+str(len(at_connect))+' does not equal CG connections: '+str(len(cg_connect)))
                sys.exit('residue number: '+str(residue_number)+', residue type: '+str(resname)+', group: '+group)

            for bead in group_fit:
                for atom in group_fit[bead]:
                    group_fit[bead][atom]['coord'] = at_mod.rotate_atom(group_fit[bead][atom]['coord'], center, xyz_rot_apply)   
                    atom_new = group_fit[bead][atom].copy()
                    coordinates_atomistic[chain_count][residue_number][atom] = atom_new
        #### if disulphide bond found move the S atoms to within 2 A of each other
            if 'disulphide' in locals():
                if disulphide:
                    coordinates_atomistic[chain_count][residue_number] = shift_sulphur(residue_number, disul_at_info, disul_cg_info, coordinates_atomistic[chain_count], cg_residues) 
                    disulphide = False

        if new_chain:
            terminal[chain_count].append(f_loc.backbone[resname]['ter'])
            chain_count+=1
            if cg_residue_id+1 != len(cg_residues):
                backbone_coords[chain_count]=[]
                coordinates_atomistic[chain_count]={}
                terminal[chain_count]=[]
                terminal[chain_count].append(f_loc.backbone[cg_residues[residue_number+1]['BB']['residue_name']]['ter'])
                sequence[chain_count]=[]
    if g_var.v >=1:
        print('\n{0:^15}{1:^12}'.format('chain number', 'length of chain')) #   \nchain number\tDelta A\t\tno in pdb\tlength of chain')
        print('\n{0:^15}{1:^12}'.format('------------', '---------------'))
        for chain in sequence:
            print('{0:^15}{1:^12}'.format(chain, len(sequence[chain])))
        print()
    final_coordinates_atomistic = finalise_novo_atomistic(coordinates_atomistic, cg_residues, box_vec)
    system['terminal_residue']=terminal
    system['PROTEIN']=chain_count
    return system, backbone_coords, final_coordinates_atomistic, sequence