def get_trading_time(target_list: 'list', frequency: 'str', fre_num: 'int', begin_date, end_date=''): if isinstance(target_list, str): target_list = [target_list] new_targets = todictmc(target_list) new_begin_date = convert_str_or_datetime_to_int_date(begin_date) if isinstance(end_date, str) and end_date.strip() == '': new_end_date = to_int_now_date('%Y%m%d') else: new_end_date = convert_str_or_datetime_to_int_date(end_date) if frequency in ('day', 'week', 'month') and fre_num != 1: raise ValueError(text.ERROR_INPUT_FREQUENCY_FREQNUM) if 0 < new_end_date < new_begin_date: raise ValueError(text.ERROR_INPUT_BEGIN_GT_ENDDATE) t, d = _history.get_trading_time(new_targets, frequency, new_begin_date, new_end_date, fre_num) if gv.freuency_to_int(frequency) >= gv.KFreq_Day: d = np.arange(0, t.size, 1, dtype=np.int) else: d -= 1 return history_cvt.convert_trading_time_to_df(t, d)
def get_factor_by_code(factor_list: 'list', target: 'str', begin_date, end_date): if isinstance(factor_list, str): factor_list = [factor_list] targets = check_target(todictmc([target])) new_begin_date = convert_str_or_datetime_to_int_date(begin_date) new_end_date = convert_str_or_datetime_to_int_date(end_date) if begin_date != 0 and new_begin_date > new_end_date: raise ValueError(text.ERROR_INPUT_BEGIN_GT_ENDDATE) check_begin_end_date(new_begin_date, new_end_date) factor_dict = _factors.get_factor_by_code(factor_list, targets, new_begin_date, new_end_date) factor_df = factor_cvt.convert_factor_by_code_to_df( factor_dict) if factor_dict is not None else None return factor_df
def get_factor_by_factor(factor: 'str', target_list: 'list', begin_date, end_date): if isinstance(target_list, str): target_list = [target_list] targets = check_target(todictmc(target_list)) new_begin_date = convert_str_or_datetime_to_int_date(begin_date) new_end_date = convert_str_or_datetime_to_int_date(end_date) if begin_date != 0 and new_begin_date > new_end_date: raise ValueError(text.ERROR_INPUT_BEGIN_GT_ENDDATE) check_begin_end_date(new_begin_date, new_end_date) factor_dict = _factors.get_factor_by_factor(factor, targets, new_begin_date, new_end_date) result_df = factor_cvt.convert_factor_by_factor_to_df( factor_dict, todotmc(targets)) if factor_dict['date'].size > 0 else None return result_df
def get_kdata_n(target_list: 'list', frequency: 'str', fre_num: 'int', n: 'int', end_date: 'str', fq=0, fill_up=False, df=False, sort_by_date=False): if isinstance(target_list, str): target_list = [target_list] if len(target_list) < 1: raise ValueError( text.ERROR_INPUT_EMPTY_PARAM.format(PARAMNAME='target_list')) if isinstance(end_date, str) and end_date.strip() == '': end_date = to_int_now_date('%Y%m%d') else: end_date = convert_str_or_datetime_to_int_date(end_date) new_targets = todictmc(target_list) fq = convert_internal_fq_to_atcore(fq) if frequency in ('day', 'week', 'month') and fre_num != 1: raise ValueError(text.ERROR_INPUT_FREQUENCY_FREQNUM) results = [None] * len(new_targets) for idx, target in enumerate(new_targets): kdata = _history.get_k_data_n([target], frequency, fre_num, n, end_date, fill_up, fq) results[idx] = history_cvt.convert_k_data_to_df( kdata[0], target_list[idx], cnt.env.get_target_type(todotmc(target))) if df: data_df = pd.concat(results, ignore_index=True) # type: pd.DataFrame if sort_by_date: data_df = data_df.sort_values( 'time', ascending=True, na_position='first') # type: pd.DataFrame data_df.index = range(data_df.shape[0]) return data_df else: return {target: results[idx] for idx, target in enumerate(target_list)}
def get_kdata(target_list: 'list', frequency: 'str', fre_num: 'int', begin_date, end_date, fq=enums.FQ_NA, fill_up=False, df=False, sort_by_date=False): if isinstance(target_list, str): target_list = [target_list] if len(target_list) < 1: raise ValueError( text.ERROR_INPUT_EMPTY_PARAM.format(PARAMNAME='target_list')) begin_date = convert_str_or_datetime_to_int_date(begin_date) end_date = convert_str_or_datetime_to_int_date(end_date) new_targets = todictmc(target_list) fq = convert_internal_fq_to_atcore(fq) if frequency in ('day', 'week', 'month') and fre_num != 1: raise ValueError(text.ERROR_INPUT_FREQUENCY_FREQNUM) if 0 < end_date < begin_date: raise ValueError(text.ERROR_INPUT_BEGIN_GT_ENDDATE) results = [None] * len(new_targets) data_list = _history.get_k_data(new_targets, frequency, fre_num, begin_date, end_date, fill_up, fq) for idx, data in enumerate(data_list): results[idx] = history_cvt.convert_k_data_to_df( data, target_list[idx], cnt.env.get_target_type(todotmc(new_targets[idx]))) if df: data_df = pd.concat(results, ignore_index=True) # type: pd.DataFrame if sort_by_date: data_df = data_df.sort_values( 'time', ascending=True, na_position='first') # type: pd.DataFrame data_df.index = range(data_df.shape[0]) return data_df else: return {target: results[idx] for idx, target in enumerate(target_list)}
def get_factor_by_day(factor_list: 'list', target_list: 'list', date=''): if isinstance(factor_list, str): factor_list = [factor_list] if isinstance(target_list, str): target_list = [target_list] targets = check_target(todictmc(target_list)) if date == '': new_date = to_int_now_date() else: new_date = convert_str_or_datetime_to_int_date(date) check_begin_end_date(new_date, new_date) factor_dict = _factors.get_factor_by_day(factor_list, targets, new_date) factor_df = factor_cvt.convert_factor_by_day_to_df( factor_dict) if factor_dict is not None else None return factor_df
def get_main_contract(main_code: 'str', begin_date, end_date): begin_date = convert_str_or_datetime_to_int_date(begin_date) if isinstance(end_date, str) and end_date.strip() == '': end_date = to_int_now_date('%Y%m%d') else: end_date = convert_str_or_datetime_to_int_date(end_date) new_targets = todictmc(main_code) if begin_date > end_date: raise ValueError(text.ERROR_INPUT_BEGIN_GT_ENDDATE) ls = _history.get_main_contract(new_targets['Market'], new_targets['Code'], begin_date, end_date) ls = [ t for t in ls if str.lower(t['TargetIns']) != str.lower(new_targets['Code']) ] return history_cvt.convert_main_contract_to_df(ls, new_targets['Market'])
def get_history_instruments(target_list: 'list', begin_date, end_date='', df=False, sort_by_date=True): if isinstance(target_list, str): target_list = [target_list] targets = check_target(todictmc(target_list)) new_begin_date = convert_str_or_datetime_to_int_date(begin_date) new_end_date = to_int_now_date( ) if end_date == '' else convert_str_or_datetime_to_int_date(end_date) if begin_date != 0 and new_begin_date > new_end_date: raise ValueError(text.ERROR_INPUT_BEGIN_GT_ENDDATE) data_matrix = _history.get_history_instruments(targets, new_begin_date, new_end_date) return history_cvt.convert_history_instrument_matrix_to_output( target_list, data_matrix, df, sort_by_date)