Пример #1
0
    def isObservable(self, X, t, params):
        """
        Method that decides if an attitude is observable for a given time and star coordinates.
        :param X: State.
        :param t: Time.
        :param params: Dynamic parameters (star coordinates).
        :return: Boolean indicating if it is visible.
        """
        period_obs = 1.0/self._obs_rate

        # It is assumed that the observations cannot be taken faster than obs_rate.
        if self._last_obs == -1:
            self._last_obs = t
        elif self._last_obs == t: # It is still the same sampling interval
            self._last_obs = t
        elif self._last_obs + period_obs <= t:
            self._last_obs = t
        else:
            return False

        mrp1 = X[0]
        mrp2 = X[1]
        mrp3 = X[2]

        mrp = np.array([mrp1, mrp2, mrp3])

        star_number = params[0]

        star_coord = self.getObserverCoordinates()

        star_right_as = star_coord[star_number][2]
        star_dec = star_coord[star_number][3]

        cos_alpha = np.cos(star_right_as)
        sin_alpha = np.sin(star_right_as)
        cos_delta = np.cos(star_dec)
        sin_delta = np.sin(star_dec)

        # Inertial direction of the star (Unit vector!!!)
        r_N = np.array([cos_delta*cos_alpha, cos_delta*sin_alpha, sin_delta])

        # Body attitude B relative to inertial frame N
        BN = attitudeKinematics.mrp2dcm(mrp)

        # Body direction of the star (Unit vector!!!)
        r_B = BN.dot(r_N)

        st_nmbr = len(self._starTrackerDirecBody) # Number of Star Trackers
        for i in range(0, st_nmbr):

            b_ST = self._starTrackerDirecBody[i] # Direction of the camera of the star
            fov_ST = self._fov[i]

            angle = np.arccos(r_B.dot(b_ST)) # angle between the star and the normal to the camera

            if angle <= fov_ST/2: # The star is observable
                return True

        return False
Пример #2
0
r_B_true_ST = np.zeros((nmbr_obs_ST, 3))
for i in range(0, nmbr_obs_ST):
    star_observed = star_catalog_ST[observers_ST[i]]
    star_RA = star_observed[2]
    star_dec = star_observed[3]
    cos_right_asc = np.cos(star_RA)
    sin_right_asc = np.sin(star_RA)
    cos_dec = np.cos(star_dec)
    sin_dec = np.sin(star_dec)

    r_N = np.array([cos_dec * cos_right_asc, cos_dec * sin_right_asc, sin_dec])

    mrp = obs_true_states_ST[i, 0:3]

    BN = attitudeKinematics.mrp2dcm(mrp)

    r_B_true_ST[i, :] = BN.dot(r_N)

plt.figure()
plt.subplot(311)
plt.plot(obs_time_vec_ST, r_B_true_ST[:, 0], label='$x_{star-B}$ true')
plt.plot(obs_time_vec_ST,
         observations_ST[:, 0],
         '.',
         label='$x_{star-B}$ observed')
plt.plot(obs_time_vec_ST,
         observations_ST[:, 0] - r_B_true_ST[:, 0],
         label='$x_{star-B}$ Error')
plt.ylabel("$x_{star-B}$", size=18)
plt.legend()
Пример #3
0
    def isObservable(self, X, t, params):
        """
        Method that decides if an attitude is observable for a given time and star coordinates.
        :param X: State.
        :param t: Time.
        :param params: Dynamic parameters (star coordinates).
        :return: Boolean indicating if it is visible.
        """
        period_obs = 1.0 / self._obs_rate

        # It is assumed that the observations cannot be taken faster than obs_rate.
        if self._last_obs == -1:
            self._last_obs = t
        elif self._last_obs == t:  # It is still the same sampling interval
            self._last_obs = t
        elif self._last_obs + period_obs <= t:
            self._last_obs = t
        else:
            return False

        mrp1 = X[0]
        mrp2 = X[1]
        mrp3 = X[2]

        mrp = np.array([mrp1, mrp2, mrp3])

        star_number = params[0]

        star_coord = self.getObserverCoordinates()

        star_right_as = star_coord[star_number][2]
        star_dec = star_coord[star_number][3]

        cos_alpha = np.cos(star_right_as)
        sin_alpha = np.sin(star_right_as)
        cos_delta = np.cos(star_dec)
        sin_delta = np.sin(star_dec)

        # Inertial direction of the star (Unit vector!!!)
        r_N = np.array(
            [cos_delta * cos_alpha, cos_delta * sin_alpha, sin_delta])

        # Body attitude B relative to inertial frame N
        BN = attitudeKinematics.mrp2dcm(mrp)

        # Body direction of the star (Unit vector!!!)
        r_B = BN.dot(r_N)

        st_nmbr = len(self._starTrackerDirecBody)  # Number of Star Trackers
        for i in range(0, st_nmbr):

            b_ST = self._starTrackerDirecBody[
                i]  # Direction of the camera of the star
            fov_ST = self._fov[i]

            angle = np.arccos(r_B.dot(
                b_ST))  # angle between the star and the normal to the camera

            if angle <= fov_ST / 2:  # The star is observable
                return True

        return False
Пример #4
0
r_B_true_ST = np.zeros((nmbr_obs_ST, 3))
for i in range(0, nmbr_obs_ST):
    star_observed = star_catalog_ST[observers_ST[i]]
    star_RA = star_observed[2]
    star_dec = star_observed[3]
    cos_right_asc = np.cos(star_RA)
    sin_right_asc = np.sin(star_RA)
    cos_dec = np.cos(star_dec)
    sin_dec = np.sin(star_dec)

    r_N = np.array([cos_dec*cos_right_asc, cos_dec*sin_right_asc, sin_dec])

    mrp = obs_true_states_ST[i,0:3]

    BN = attitudeKinematics.mrp2dcm(mrp)

    r_B_true_ST[i,:] = BN.dot(r_N)

plt.figure()
plt.subplot(311)
plt.plot(obs_time_vec_ST, r_B_true_ST[:,0], label='$x_{star-B}$ true')
plt.plot(obs_time_vec_ST, observations_ST[:,0], '.', label='$x_{star-B}$ observed')
plt.plot(obs_time_vec_ST, observations_ST[:,0]-r_B_true_ST[:,0], label='$x_{star-B}$ Error')
plt.ylabel("$x_{star-B}$", size=18)
plt.legend()
plt.subplot(312)
plt.plot(obs_time_vec_ST, r_B_true_ST[:,1], label='$y_{star-B}$ true')
plt.plot(obs_time_vec_ST, observations_ST[:,1], '.', label='$y_{star-B}$ observed')
plt.plot(obs_time_vec_ST, observations_ST[:,1]-r_B_true_ST[:,1], label='$y_{star-B}$ Error')
plt.ylabel("$y_{star-B}$", size=18)