Пример #1
0
def bal_vs_cap_data():

    number_of_nodes = 8
    length_of_timeseries = 280512
    hours_per_year = length_of_timeseries/32

    modes = ['lin', 'sqr']
    scalefactors = np.linspace(0, 2, 41)
    #scalefactors = [0.1, 1.45]

    for mode in modes:
        balancing_energy = [] # this is for saving the balancing energy
        total_capacity = []
        max_balancing = [] # this is for saving the balancing capacity
        balancing_caps99 = [] # this is for saving the balancing capacity,
                              # found as the 99% quantile of the balancing
                              # energy

        if mode == 'lin':
            h0 = au.get_quant_caps(filename=\
                                   './results/w_aHE_copper_lin_flows.npy')
        if mode == 'sqr':
            h0 = au.get_quant_caps(filename=\
                                    './results/w_aHE_copper_sqr_flows.npy')

        total_caps_q99 = np.sum(au.biggestpair(h0))
        print total_caps_q99

        for a in scalefactors:
            flow_calc = fc.FlowCalculation('w', 'aHE', ''.join([str(a), 'q99']), mode)
            filename = ''.join([str(flow_calc), '.npz'])
            nodes = world_Nodes(load_filename = filename)
            total_balancing_power = sum([sum(n.balancing) for n in nodes])

            total_mean_load = np.sum([n.mean for n in nodes])
            normalized_BE = total_balancing_power/\
                    (length_of_timeseries*total_mean_load)

            balancing_energy.append(normalized_BE)
            max_balancing.append(np.sum(np.max(n.balancing) for n in nodes)\
                                    /total_mean_load)

            balancing_caps99.append(np.sum(au.get_q(n.balancing,0.99) for n in nodes)/total_mean_load)
            total_capacity.append(a*total_caps_q99)

        if mode == 'lin':
            TC_lin = total_capacity
            BE_lin = balancing_energy
            BC_lin = max_balancing
            BC99_lin = balancing_caps99
        if mode == 'sqr':
            TC_sqr = total_capacity
            BE_sqr = balancing_energy
            BC_sqr = max_balancing
            BC99_sqr = balancing_caps99

    np.savez('./results/w_bal_vs_cap_data99.npz', TC_lin=TC_lin,\
            BE_lin=BE_lin, BC_lin=BC_lin, BC99_lin=BC99_lin,\
            TC_sqr=TC_sqr, BE_sqr=BE_sqr, BC_sqr=BC_sqr, BC99_sqr=BC99_sqr)
def get_total_capacity(h0):
    """ This function takes a list of capacity-vectors and returns
        the total capacity installed.

        """

    total_capacity = sum(au.biggestpair(h0))

    return total_capacity
Пример #3
0
    def add_instance(self, N, F, FC):

        inst={}
        inst['alphas'] = [n.alpha for n in N]
        inst['gammas'] = [n.gamma for n in N]
        length_of_timeseries = len(N[0].balancing)

                # save data, that requires a Flowcalculation object for specification
        inst['FlowCalculation'] = FC

        if FC.capacities!='zerotrans':
            inst['BE'] = [np.sum(n.balancing)/\
                              length_of_timeseries for n in N]
            inst['BC'] = [au.get_q(n.balancing, 0.99) for n in N]
        # Save flow histograms of all the flow along the links
            flow_histograms = []
            for link in xrange(F.shape[0]):
                flow, count = myhist(F[link], bins=200)
                flow_histograms.append(np.array([flow, count]))
            inst['flowhists'] = flow_histograms



            if FC.hourly_flowhist:
                # flow histograms, of flow along the links, conditioned
                # on the hour.
                hourly_flow_histograms = []
                for link in xrange(F.shape[0]):
                    hour_hist_list = []
                    for hour in range(24):
                        hour_indices = [i for i in xrange(F.shape[1]) \
                                        if np.mod(i, 24)==hour]
                        hour_flows = F[link][hour_indices]
                        flow, count = myhist(hour_flows, bins=200)
                        hour_hist_list.append(np.array([flow, count]))
                    hourly_flow_histograms.append(hour_hist_list)
                inst['hourly_flowhists'] = hourly_flow_histograms


            if FC.capacities[-3:len(FC.capacities)] == "q99":
                inst['Total_TC'] = TC_from_FC(FC)[0]
                inst['TC'] = TC_from_FC(FC)[1]
            elif FC.capacities == 'copper':
                h0 = au.get_quant_caps(F=F)
                inst['TC'] = h0
                inst['Total_TC'] = np.sum(au.biggestpair(h0))
        else: # that is if this is a zero transmission case
            inst['Total_TC'] = 0
            balancing_timeseries = []
            for n in N:
                balancing_timeseries.append(-au.get_negative(n.mismatch))
            inst['BE'] = [np.sum(bal)/length_of_timeseries\
                          for bal in balancing_timeseries]
            inst['BC'] = [au.get_q(bal, 0.99) for bal in balancing_timeseries]

        self.cache.append(inst)
Пример #4
0
def TC_from_FC(FC):
    copperFC = FC.copy()
    copperFC.capacities = "copper"
    copperflowfile = ''.join(["results/", str(copperFC),\
                         '_flows.npy'])
    h0 = au.get_quant_caps(filename=copperflowfile)
    # expecting capacities of format: 0.35q99
    scalefactor = float(FC.capacities[0:-3])

    total_TC = scalefactor*np.sum(au.biggestpair(h0))
    return total_TC, h0
Пример #5
0
def extract_BC_vs_TC_data(solvermode, TCscalefactors, savefilename=None):
    """ This function returns the a dataset with total balancing
        capacity (normalized to the total mean load) of the world
        along with the total transmission capacity of the world.
        The balancing capacity found as the maximum balancing over
        a timeseries, as well as the 99% quantile is returned.

        """


    h0 = au.get_quant_caps(filename =\
               ''.join(['./results/w_aHE_copper_', solvermode, '_flows.npy']))
    total_TC_q99 = np.sum(au.biggestpair(h0))

    BC_max = []
    BC_q99 = []
    TC = []

    for a in TCscalefactors:
        flow_calc = fc.FlowCalculation('w', 'aHE',\
                                       ''.join([str(a), 'q99']), solvermode)
        filename = ''.join([str(flow_calc), '.npz'])
        nodes = world_Nodes(load_filename = filename)

        total_mean_load = np.sum([n.mean for n in nodes])

        BC_max.append(np.sum(np.max(n.balancing) for n in nodes)\
                            /total_mean_load)
        BC_q99.append(np.sum(au.get_q(n.balancing, 0.99) for n in nodes)\
                                                        /total_mean_load)

        TC.append(a*total_TC_q99)

    if not savefilename:
        savefilename = ''.join(['./results/BC_TC_data', solvermode, '.npz'])

    np.savez(savefilename, TC=TC, BC_max=BC_max, BC_q99=BC_q99)
Пример #6
0
def get_TCs(flowcalc, datapath='./results/AlphaSweepsCopper/'):
    filename = filename_from_flowcalc(flowcalc)
    h0 = get_data(filename, 'TC', path=datapath)
    return au.biggestpair(h0)
import aurespf.solvers as au
import figutils as fig
from FlowCalculation import FlowCalculation
from europe_plusgrid import europe_plus_Nodes

layouts = ['Europe_RU', 'Europe_NA', 'Europe_ME', 'Europe_RU_NA_ME']
modes = ['lin', 'sqr']

datapath = './results/Europeplus/'

Europe = europe_plus_Nodes(admat='./settings/Europeadmat.txt')
internal_links = [au.AtoKh(Europe)[-1][i][0]\
        for i in range(len(au.AtoKh(Europe)[-1]))]

for layout in layouts:
    admat = './settings/' + layout + 'admat.txt'
    print admat
    N = europe_plus_Nodes(admat=admat)
    for mode in modes:
        fc = FlowCalculation(layout, 'aHE', 'copper', mode)
        filename = str(fc) + '.pkl'
        internal_indices, external_indices = fig.get_internal_external_link_indices(N, internal_links)
        all_TC = au.biggestpair(fig.get_data(filename, 'TC', path=datapath))
        print fc.pretty_layout(), fc.pretty_solvermode()
        for link_index in external_indices:
            print au.AtoKh(N)[-1][link_index]
            print all_TC[link_index]


Пример #8
0
        filename = str(fc) + '.pkl'
        filename_sqr = str(fc_sqr) + '.pkl'
        flowfilename = './results/' + fc.layout + '_aHE_copper_lin_flows.npy'
        flowfilename_sqr = './results/' + fc.layout + '_aHE_copper_sqr_flows.npy'
        unnormalized_BE = [fig.get_data(filename, 'BE', \
                             path=datapath)[n.id] for n in N]
        unnormalized_BC = [fig.get_data(filename, 'BC', \
                             path=datapath)[n.id] for n in N]
        unnormalized_BC_sqr = [fig.get_data(filename_sqr, 'BC', \
                             path=datapath)[n.id] for n in N]
        BE.append(np.sum(unnormalized_BE)/total_mean_load)
        BC.append(np.sum(unnormalized_BC)/total_mean_load)
        BC_sqr.append(np.sum(unnormalized_BC_sqr)/total_mean_load)
        LI = au.linfo(admat)
        energywiseTC = au.biggestpair(au.get_quant_caps(filename=flowfilename))
        energywiseTC_sqr = au.biggestpair(au.get_quant_caps(filename=flowfilename_sqr))
        print np.sum(energywiseTC)
        TC.append(np.sum([energywiseTC[i]*float(LI[i][2]) \
                            for i in range(len(LI))])/(1e3*total_mean_load))
        TC_sqr.append(np.sum([energywiseTC_sqr[i]*float(LI[i][2]) \
                            for i in range(len(LI))])/(1e3*total_mean_load))
        print TC
    index1 = np.arange(len(BE))
    left = index1 + 0.5*barwidth
    left2 = left + 0.5*barwidth
    plt.ion()
    ax1 = plt.subplot(3,1,1)
    if not interactive:
        plt.gcf().set_size_inches([7.5,12])
        plt.gcf().set_dpi(400)
def balancing_energy():
    """ This function replicates Figure 5 in Rolando et. al 2013. """

    europe_raw = EU_Nodes()
    europe_copper = EU_Nodes(load_filename = "copper.npz")

    ########### Calculate the minimum balancing energy #############
    # The balancing energy is the smallest in the case of unconstrained
    # flow. This is the total balancing energy for all of Europe,
    # averaged over the time and normalized to the total mean load

    total_balancing_copper = np.sum(n.balancing for n in europe_copper)
    mean_balancing_copper = np.mean(total_balancing_copper)
    total_mean_load = np.sum(n.mean for n in europe_copper)

    min_balancing = mean_balancing_copper/total_mean_load
    print "The minimum balancing energy is:", min_balancing

    ######### Calculate the maximum balancing energy #############
    # The maximum balancing energy is the negative mismatch from
    # the raw date, that is the unsolved system, before any flow
    # has been taken into account.

    # Note, that contratry to total_balancing_copper (a timeseries)
    # total_balancing raw is just a number as it has been summed over
    # time.
    total_balancing_raw = -np.sum(np.sum(n.mismatch[n.mismatch<0])
                                  for n in europe_raw)
    mean_balancing_raw = total_balancing_raw/\
                                            total_balancing_copper.size

    max_balancing = mean_balancing_raw/total_mean_load



    #### Calculate the current total capacity ################
    # the hardcoded 10000 stems from a link, we don't know the
    # actual capacity of, so it has been set to 10000 in the
    # eadmat.txt file.
    current_total_cap = sum(au.biggestpair(au.AtoKh(europe_raw)[-2])) - 10000

    print min_balancing, max_balancing
    scalefactorsA = [0.5, 1, 2, 4, 6, 8, 10, 12, 14]

    #scalefactorsA = np.linspace(0,1,11) # for use with the alternative A rule
    smoothA_cap, smoothA = get_bal_vs_cap(scalefactorsA, 'lin_int_', get_h0_A)
    plt.plot(smoothA_cap, smoothA(smoothA_cap), 'r-', label='Interpolation A')

    scalefactorsB = np.linspace(0, 2.5, 10)
    smoothB_cap, smoothB = get_bal_vs_cap(scalefactorsB, 'linquant_int_', get_h0_B)
    plt.plot(smoothB_cap, smoothB(smoothB_cap), 'g-', label='Interpolation B')

    quantiles = [0.5, 0.8, 0.9, 0.95, 0.97, 0.99, 0.995, 0.999, 0.9995, 0.9999, 1]
    smoothC_cap,smoothC = get_bal_vs_cap(quantiles, 'quant_int_', get_h0_C)
    plt.plot(smoothC_cap,smoothC(smoothC_cap),'b-',
             label="Interpolation C")

    plt.hlines(min_balancing, 0, 900, linestyle='dashed')
    plt.vlines(current_total_cap/1000, 0, 0.27, linestyle='dashed')
    plt.xlabel("Total installed transmission capacity, [GW]")
    plt.ylabel("Balancing energy [normalized]")
    plt.axis([0, 900.1, .125, .27])
    plt.yticks([.15,.17,.19,.21,.23,.25,.27])
    plt.xticks([0,100,200,300,400,500,600,700,800,900])
    plt.legend()
    plt.tight_layout()

    plt.savefig("./Plotting practice/balancing.pdf")
Пример #10
0
def make_europeplus_barplot(ydatalabel, interactive=False,\
        barwidth=0.5):
    """ Creates a bar plot showing the property specified by
        ydatalabel in the five different layouts in the Europeplus
        configuration.

        """

    plt.close()
    plt.rcParams['axes.color_cycle'] = color_cycle
    if interactive:
        plt.ion()
    datapath = "./results/Europeplus/"
    savepath = "./results/figures/Europeplusfigs/"
    sqr_and_lin = False
    if ydatalabel != 'BE':
        sqr_and_lin = True

    layoutlist = ['Europe',\
                 'Europe-RU', 'Europe-NA', 'Europe-ME', 'Europe-RU-NA-ME']

    ydata_lin = []
    ydata_sqr = []
    ydata_lin_ext = []
    ydata_sqr_ext = []

    for l in layoutlist:
        layout = l.replace('-', '_')
        fc_string_lin = str(FlowCalculation(layout, 'aHE', 'copper', 'lin'))
        fc_string_sqr = str(FlowCalculation(layout, 'aHE', 'copper', 'sqr'))
        admat = "./settings/" + layout + "admat.txt"
        N = europe_plus_Nodes(admat=admat)
        if layout=='Europe':
            internal_links = [au.AtoKh(N)[-1][i][0] \
                    for i in range(len(au.AtoKh(N)[-1]))]

        total_mean_load = np.sum([n.mean for n in N])
        if ydatalabel == 'BE':
            unnormalized_data = get_data(fc_string_lin + '.pkl', \
                                         ydatalabel, path=datapath)
            ydata_lin.append(np.sum(unnormalized_data)/total_mean_load)
            ylabel = "Backup energy [normalized]"
        elif ydatalabel == 'BC':
            unnormalized_data_lin = get_data(fc_string_lin + '.pkl',\
                                             ydatalabel, path=datapath)
            unnormalized_data_sqr = get_data(fc_string_sqr + '.pkl',\
                                             ydatalabel, path=datapath)
            ydata_lin.append(np.sum(unnormalized_data_lin)/total_mean_load)
            ydata_sqr.append(np.sum(unnormalized_data_sqr)/total_mean_load)
            ylabel = "Backup capacity [normalized]"
        elif ydatalabel == 'TC':
            internal_indices, external_indices =\
                    get_internal_external_link_indices(N, internal_links)
            print internal_indices, external_indices
            all_lin_TC = au.biggestpair(\
                    get_data(fc_string_lin + '.pkl', 'TC', path=datapath))
            all_sqr_TC = au.biggestpair(\
                    get_data(fc_string_sqr + '.pkl', 'TC', path=datapath))
            ydata_lin.append(\
                    sum([all_lin_TC[i] for i in internal_indices])/1e3)
            ydata_lin_ext.append(\
                    sum([all_lin_TC[i] for i in external_indices])/1e3)
            ydata_sqr.append(\
                    sum([all_sqr_TC[i] for i in internal_indices])/1e3)
            ydata_sqr_ext.append(\
                    sum([all_sqr_TC[i] for i in external_indices])/1e3)
            ylabel = "Transmission capacity [GW]" ## note the unit, this was
                                                  ## obtained by /1e3

################# implement transmission capacity that only include internal european links######

    index = np.array([0, 1.5, 2.5, 3.5, 5])
    left = index + 0.5*barwidth
    left2 = index + barwidth
    ax = plt.subplot(1,1,1)

    if ydatalabel=='BE':
        plt.bar(left, ydata_lin, width=barwidth, color=blue)
    elif ydatalabel=='BC':
        plt.bar(left, ydata_lin, width=0.5*barwidth,\
                color=blue, label = 'Localized flow')
        plt.bar(left2, ydata_sqr, width=0.5*barwidth,\
                color=red, label = 'Synchronized flow')
        plt.legend()
    elif ydatalabel=='TC':
        plt.bar(left, np.array(ydata_lin)+np.array(ydata_lin_ext), \
                width=0.5*barwidth, color=darkblue,\
                label = 'External capacity: Localized flow')
        plt.bar(left, np.array(ydata_lin), width=0.5*barwidth,\
                color=blue, label = 'Internal capacity: Localized flow')
        plt.bar(left2, np.array(ydata_sqr)+np.array(ydata_sqr_ext), \
                width=0.5*barwidth, color=darkred,\
                label = 'External capacity: Synchronized flow')
        plt.bar(left2, np.array(ydata_sqr), width=0.5*barwidth,\
                color=red, label = 'Internal capacity: Synchronized flow')
        plt.legend(prop={'size':13}, loc=2)
    plt.xticks(left + 0.5*barwidth, layoutlist)
    plt.ylabel(ylabel)
    plt.title('Copper flow')

    figfilename = ydatalabel + "vslayout.pdf"
    if not interactive:
        plt.savefig(savepath + figfilename)