def test_softmax0(self): # is this a correct test? Should the gradients always be this small? my_graph = ad.Softmax(self.my_w4) tf_graph = tf.nn.softmax(self.tf_w4) wrt_vars = [self.my_w4] tf_vars = [self.tf_w4] utils.custom_test(self, my_graph, wrt_vars, tf_graph, tf_vars)
def sample_char( logits): # sample a character from the multinomial distribution next_char_onehot = np.random.multinomial( n=1, pvals=ad.Softmax(logits / temperature)()[0]) next_char = text_loader.ind_to_char[np.argmax(next_char_onehot)] next_char_onehot = np.expand_dims(next_char_onehot, axis=0) return next_char_onehot, next_char
def test_softmax2(self): my_graph = ad.Softmax(self.my_w6) tf_graph = tf.nn.softmax(self.tf_w6) wrt_vars = [self.my_w6] tf_vars = [self.tf_w6] utils.custom_test(self, my_graph, wrt_vars, tf_graph, tf_vars)
def network_output(x): probs = ad.Softmax(nn(x)) return probs()