def test_cars(): X, y = cars.load() run_automl_test( dataset=(X, y), input=(MatrixContinuousDense, Supervised[VectorCategorical]), output=VectorCategorical, search_timeout=60, evaluation_timeout=5, expected_fitness=0.9, )
# import high-level API from autogoal.ml import AutoML from autogoal.kb import MatrixContinuousDense, CategoricalVector # load data from autogoal.datasets import cars X, y = cars.load() # instantiate AutoML class automl = AutoML( input=MatrixContinuousDense(), output=CategoricalVector(), # ... other parameters and constraints ) # fit the model automl.fit(X, y) # save the best model with open("model.bin", "wb") as fp: automl.save(fp)