Пример #1
0
 def __init__(self, Trained: Boolean(), N: Discrete(min=500, max=2000),
              C: Boolean()):
     self.Trained = Trained
     self.N = N
     self.C = C
     NltkTrainedTagger.__init__(self)
     _TnT.__init__(self, Trained=Trained, N=N, C=C)
Пример #2
0
 def __init__(
         self,
         featurewise_center: Boolean(),
         samplewise_center: Boolean(),
         featurewise_std_normalization: Boolean(),
         samplewise_std_normalization: Boolean(),
         rotation_range: Discrete(0, 15),
         width_shift_range: Continuous(0, 0.25),
         height_shift_range: Continuous(0, 0.25),
         shear_range: Continuous(0, 15),
         zoom_range: Continuous(0, 0.25),
         horizontal_flip: Boolean(),
         vertical_flip: Boolean(),
 ):
     super().__init__(
         featurewise_center=featurewise_center,
         samplewise_center=samplewise_center,
         featurewise_std_normalization=featurewise_std_normalization,
         samplewise_std_normalization=samplewise_std_normalization,
         rotation_range=rotation_range,
         width_shift_range=width_shift_range,
         height_shift_range=height_shift_range,
         shear_range=shear_range,
         zoom_range=zoom_range,
         horizontal_flip=horizontal_flip,
         vertical_flip=vertical_flip,
     )
Пример #3
0
    def __init__(
            self,
            cutoff: Discrete(min=0, max=10),
    ):
        self.cutoff = cutoff
        self.tagger = _UnigramTagger
        self.values = dict(cutoff=cutoff)

        NltkTagger.__init__(self)
Пример #4
0
def test_sample_subset():
    class A:
        def __init__(self, features: Subset('Subset', Discrete(1, 5), 'Hello',
                                            1, None)):
            self.features = features

    g = generate_cfg(A)
    selected_features = g.sample().features
    selected = set([repr(feature) for feature in selected_features])
    assert selected.issubset(
        [repr(feature) for feature in [Discrete(1, 5), 'Hello', 1, None]])
Пример #5
0
def _get_arg_values(arg, value, cls):
    if isinstance(value, bool):
        return Boolean()
    if isinstance(value, int):
        return Discrete(*_get_integer_values(arg, value, cls))
    if isinstance(value, float):
        return Continuous(*_get_float_values(arg, value, cls))
    if isinstance(value, str):
        values = _find_parameter_values(arg, cls)
        return Categorical(*values) if values else None
    return None
Пример #6
0
    def __init__(
            self,
            dm: Discrete(min=0, max=2),
            dbow_words: Discrete(min=-100, max=100),
            dm_concat: Discrete(min=-100, max=100),
            dm_tag_count: Discrete(min=0, max=2),
            alpha: Continuous(min=0.001, max=0.075),
            epochs: Discrete(min=2, max=10),
            window: Discrete(min=2, max=10),
            inner_tokenizer: algorithm(Sentence(), List(Word())),
            inner_stemmer: algorithm(Word(), Stem()),
            inner_stopwords: algorithm(List(Word()), List(Word())),
            lowercase: Boolean(),
            stopwords_remove: Boolean(),
    ):

        self.inner_tokenizer = inner_tokenizer
        self.inner_stemmer = inner_stemmer
        self.inner_stopwords = inner_stopwords
        self.lowercase = lowercase
        self.stopwords_remove = stopwords_remove

        super().__init__(
            dm=dm,
            dbow_words=dbow_words,
            dm_concat=dm_concat,
            dm_tag_count=dm_tag_count,
            alpha=alpha,
            epochs=epochs,
            window=window,
        )
Пример #7
0
    def __init__(
        self,
        affix_length: Discrete(min=-2, max=-6),
        min_stem_length: Discrete(min=1, max=4),
        cutoff: Discrete(min=0, max=10),
        backoff: algorithm(Tuple(List(List(Word())), List(List(Postag()))),
                           List(List(Postag()))),
    ):
        self.affix_length = affix_length
        self.min_stem_length = min_stem_length
        self.cutoff = cutoff
        self.backoff = backoff
        self.tagger = _AffixTagger

        self.values = dict(
            affix_length=affix_length,
            min_stem_length=min_stem_length,
            cutoff=cutoff,
            backoff=backoff,
        )

        NltkTagger.__init__(self)
Пример #8
0
 def __init__(
         self,
         filters: Discrete(2, 8),
         kernel_size: Categorical(3, 5, 7),
         l1: Continuous(0, 1e-3),
         l2: Continuous(0, 1e-3),
 ):
     self.l1 = l1
     self.l2 = l2
     super().__init__(
         filters=2**filters,
         kernel_size=(kernel_size, kernel_size),
         kernel_regularizer=regularizers.l1_l2(l1=l1, l2=l2),
         padding="same",
         data_format="channels_last",
     )
Пример #9
0
def _get_integer_values(arg, value, cls):
    if value > 0:
        min_value = 0
        max_value = 2 * value
    elif value == 0:
        min_value = -100
        max_value = 100
    else:
        return None

    # binary search for minimum value
    left = min_value
    right = value

    while left < right:
        current_value = int((left + right) / 2)
        if current_value in [left, right]:
            break

        if _try(cls, arg, current_value):
            right = current_value
        else:
            left = current_value

    min_value = right

    # binary search for maximum value
    left = value
    right = max_value

    while left < right:
        current_value = int((left + right) / 2)
        if current_value in [left, right]:
            break

        if _try(cls, arg, current_value):
            left = current_value
        else:
            right = current_value

    max_value = left

    if min_value < max_value:
        return Discrete(min=min_value, max=max_value)

    return None
Пример #10
0
 def __init__(
         self,
         units: Discrete(32, 1024),
         activation: Categorical("tanh", "sigmoid", "relu", "linear"),
         recurrent_activation: Categorical("tanh", "sigmoid", "relu",
                                           "linear"),
         dropout: Continuous(0, 0.5),
         recurrent_dropout: Continuous(0, 0.5),
 ):
     super().__init__(
         units=units,
         activation=activation,
         recurrent_activation=recurrent_activation,
         dropout=dropout,
         recurrent_dropout=recurrent_dropout,
         return_sequences=False,
     )
Пример #11
0
 def __init__(
         self,
         merge_mode: Categorical("sum", "mul", "concat", "ave"),
         units: Discrete(32, 1024),
         activation: Categorical("tanh", "sigmoid", "relu", "linear"),
         recurrent_activation: Categorical("tanh", "sigmoid", "relu",
                                           "linear"),
         dropout: Continuous(0, 0.5),
         recurrent_dropout: Continuous(0, 0.5),
 ):
     super().__init__(
         layer=_LSTM(
             units=units,
             activation=activation,
             recurrent_activation=recurrent_activation,
             dropout=dropout,
             recurrent_dropout=recurrent_dropout,
             return_sequences=False,
         ),
         merge_mode=merge_mode,
     )
Пример #12
0
 def __init__(self, filters: Discrete(2, 8),
              kernel_size: Categorical(3, 5, 7)):
     super().__init__(filters=2**filters,
                      kernel_size=kernel_size,
                      padding="causal")
Пример #13
0
 def f(x: Discrete(1, 5)):
     pass
Пример #14
0
 def __init__(self, output_dim: Discrete(32, 128)):
     super().__init__(input_dim=1000, output_dim=output_dim)
Пример #15
0
 def __init__(self, units: Discrete(128, 1024), **kwargs):
     super().__init__(units=units, **kwargs)
Пример #16
0
 def __init__(self, features: Subset('Subset', Discrete(1, 5),
                                     Categorical('adam', 'sgd'))):
     pass
Пример #17
0
 def __init__(self, x: Discrete(1, 5)):
     pass
Пример #18
0
 def __init__(self, features: Subset('Subset', Discrete(1, 5), 'Hello',
                                     1, None)):
     self.features = features
Пример #19
0
 def __init__(self, ngram: Discrete(1, 3)):
     super().__init__(ngram_range=(1, ngram))
     self.ngram = ngram
Пример #20
0
 def __init__(self, x: Discrete(-10, 10), y: Discrete(-10, 10)):
     self.x = x
     self.y = y
Пример #21
0
 def __init__(self, n: Discrete(50, 200)):
     super().__init__(n_components=n)
     self.n = n
Пример #22
0
 def __init__(self, ngram: Discrete(1, 3), use_idf: Boolean()):
     super().__init__(ngram_range=(1, ngram), use_idf=use_idf)
     self.ngram = ngram