Пример #1
0
    def connect_tuple_wrappers(node, output_type):
        if not isinstance(output_type, Tuple):
            return

        for index in range(0, len(output_type.inner)):
            internal_input = output_type.inner[index]

            for other_clss in registry:
                annotations = _get_annotations(other_clss)
                other_input = annotations.input

                if not (conforms(internal_input, other_input) and other_clss != node):
                    continue

                # `other_class` has input compatible with one element in the Tuple
                # build the output `Tuple[..., internal_output, ...]` of the wrapper class
                internal_output = annotations.output
                output_tuple = list(output_type.inner)
                output_tuple[index] = internal_output
                output_tuple_type = Tuple(*output_tuple)

                # dynamic class representing the wrapper algorithm
                if (index, output_type, output_tuple_type) in list_tuples:
                    continue

                other_wrapper = build_composite_tuple(
                    index, output_type, output_tuple_type
                )
                list_tuples.add((index, output_type, output_tuple_type))
                registry.append(other_wrapper)

                open_nodes.append(other_wrapper)
                G.add_edge(node, other_wrapper)
Пример #2
0
        def build(internal_output, depth):
            if internal_output in types_seen:
                return

            for other_clss in registry:
                annotations = _get_annotations(other_clss)

                if annotations in list_pairs:
                    continue

                other_input = annotations.input
                other_output = annotations.output

                if other_input == other_output:
                    continue

                if not conforms(internal_output, other_input):
                    continue

                other_wrapper = build_composite_list(other_input, other_output, depth)
                list_pairs.add(annotations)
                registry.append(other_wrapper)
                types_queue.append(_get_annotations(other_wrapper).output)
Пример #3
0
def _has_output(clss, output):
    return conforms(_get_annotations(clss).output, output)
Пример #4
0
def _has_input(clss, input):
    return conforms(input, _get_annotations(clss).input)
Пример #5
0
def build_pipelines(input, output, registry) -> "PipelineBuilder":
    """
    Creates a `PipelineBuilder` instance that generates all pipelines
    from `input` to `output` types.

    ##### Parameters

    - `input`: type descriptor for the desired input.
    - `output`: type descriptor for the desired output.
    - `registry`: list of available classes to build the pipelines.
    """

    # warnings.warn(
    #     "This method is deprecated and not under use by AutoGOAL's"
    #     " internal API anymore, use `build_pipeline_graph` instead.",
    #     category=DeprecationWarning,
    #     stacklevel=2,
    # )

    list_pairs = set()
    types_queue = []

    if isinstance(input, Tuple):
        types_queue.extend(input.inner)
    else:
        types_queue.append(input)

    if isinstance(output, Tuple):
        types_queue.extend(output.inner)
    else:
        types_queue.append(output)

    types_seen = set()

    while types_queue:
        output_type = types_queue.pop(0)

        def build(internal_output, depth):
            if internal_output in types_seen:
                return

            for other_clss in registry:
                annotations = _get_annotations(other_clss)

                if annotations in list_pairs:
                    continue

                other_input = annotations.input
                other_output = annotations.output

                if other_input == other_output:
                    continue

                if not conforms(internal_output, other_input):
                    continue

                other_wrapper = build_composite_list(other_input, other_output, depth)
                list_pairs.add(annotations)
                registry.append(other_wrapper)
                types_queue.append(_get_annotations(other_wrapper).output)

        depth = 0

        while isinstance(output_type, List):
            if output_type.depth() >= MAX_LIST_DEPTH:
                break

            depth += 1

            output_type = output_type.inner
            build(output_type, depth)
            types_seen.add(output_type)

            logger.debug("Output type", output_type)

    list_tuples = set()

    def connect_tuple_wrappers(node, output_type):
        if not isinstance(output_type, Tuple):
            return

        for index in range(0, len(output_type.inner)):
            internal_input = output_type.inner[index]

            for other_clss in registry:
                annotations = _get_annotations(other_clss)
                other_input = annotations.input

                if not (conforms(internal_input, other_input) and other_clss != node):
                    continue

                # `other_class` has input compatible with one element in the Tuple
                # build the output `Tuple[..., internal_output, ...]` of the wrapper class
                internal_output = annotations.output
                output_tuple = list(output_type.inner)
                output_tuple[index] = internal_output
                output_tuple_type = Tuple(*output_tuple)

                # dynamic class representing the wrapper algorithm
                if (index, output_type, output_tuple_type) in list_tuples:
                    continue

                other_wrapper = build_composite_tuple(
                    index, output_type, output_tuple_type
                )
                list_tuples.add((index, output_type, output_tuple_type))
                registry.append(other_wrapper)

                open_nodes.append(other_wrapper)
                G.add_edge(node, other_wrapper)

    G = Graph()

    open_nodes = []
    closed_nodes = set()

    # Enqueue open nodes
    for clss in registry:
        if conforms(input, _get_annotations(clss).input):
            open_nodes.append(clss)
            G.add_edge(GraphSpace.Start, clss)

    connect_tuple_wrappers(GraphSpace.Start, input)

    if GraphSpace.Start not in G:
        raise TypeError("There are no classes compatible with input type:%r." % input)

    while open_nodes:
        clss = open_nodes.pop(0)

        if clss in closed_nodes:
            continue

        closed_nodes.add(clss)
        output_type = _get_annotations(clss).output

        for other_clss in registry:
            other_input = _get_annotations(other_clss).input
            if conforms(output_type, other_input) and other_clss != clss:
                open_nodes.append(other_clss)
                G.add_edge(clss, other_clss)

        connect_tuple_wrappers(clss, output_type)

        if conforms(output_type, output):
            G.add_edge(clss, GraphSpace.End)

    if GraphSpace.End not in G:
        raise TypeError(
            "No pipelines can be constructed from input:%r to output:%r."
            % (input, output)
        )

    reachable_from_end = set(nx.dfs_preorder_nodes(G.reverse(False), GraphSpace.End))
    unreachable_nodes = set(G.nodes) - reachable_from_end
    G.remove_nodes_from(unreachable_nodes)

    if not GraphSpace.Start in G:
        raise TypeError(
            "No pipelines can be constructed from input:%r to output:%r."
            % (input, output)
        )

    return PipelineBuilder(G, registry)
Пример #6
0
        def type_is_guaranteed(input_type):
            for other_type in types:
                if conforms(other_type, input_type):
                    return True

            return False