Пример #1
0
def test_vonmises_logpdf(T=100, K=4, D=10):
    # Test single datapoint log pdf
    x = npr.vonmises(0, 1, size=(T, D))
    mus = npr.randn(K, D)
    kappas = np.exp(npr.randn(K, D))
    ll1 = vonmises_logpdf(x[:, None, :], mus, kappas)
    ll2 = np.sum(vonmises.logpdf(x[:, None, :],
                                 kappas[None, :, :],
                                 loc=mus[None, :, :]),
                 axis=-1)
    assert np.allclose(ll1, ll2)
Пример #2
0
 def sample_x(self, z, xhist, input=None, tag=None, with_noise=True):
     D, mus, kappas = self.D, self.mus, np.exp(self.log_kappas)
     assert self.D == 1, "InputDrivenObservations written for D = 1!"
     if input.ndim == 1 and input.shape == (
             self.M,
     ):  # if input is vector of size self.M (one time point), expand dims to be (1, M)
         input = np.expand_dims(input, axis=0)
     ###
     driven_angle = mus @ input.T
     kappas_t = np.repeat(kappas[:, :, None], input.T.shape[-1],
                          axis=2)  #time-independent
     return npr.vonmises(driven_angle[z], kappas_t[z])  #, D)
Пример #3
0
def test_vonmises_logpdf(T=100, K=4, D=10):
    """
    NOTE: Skipping this test until the scipy special functions
    make it into the release version of autograd.
    """
    # Test single datapoint log pdf
    x = npr.vonmises(0, 1, size=(T, D))
    mus = npr.randn(K, D)
    kappas = np.exp(npr.randn(K, D))
    ll1 = vonmises_logpdf(x[:, None, :], mus, kappas)
    ll2 = np.sum(vonmises.logpdf(x[:, None, :],
                                 kappas[None, :, :],
                                 loc=mus[None, :, :]),
                 axis=-1)
    assert np.allclose(ll1, ll2)
Пример #4
0
 def sample_x(self, z, xhist, input=None, tag=None, with_noise=True):
     D, mus, kappas = self.D, self.mus, np.exp(self.log_kappas)
     return npr.vonmises(self.mus[z], kappas[z], D)