def fit_maxlike(x, r_guess):
    # follows Wikipedia's section on negative binomial max likelihood
    assert np.var(x) > np.mean(x), "Likelihood-maximizing parameters don't exist!"
    loglike = lambda r, p: np.sum(negbin_loglike(r, p, x))
    p = lambda r: np.sum(x) / np.sum(r+x)
    rprime = lambda r: grad(loglike)(r, p(r))
    r = newton(rprime, r_guess)
    return r, p(r)
Пример #2
0
 def log_likelihood(weights, inputs, targets):
     logprobs = outputs(weights, inputs)
     loglik = 0.0
     num_time_steps, num_examples, _ = inputs.shape
     for t in range(num_time_steps):
         loglik += np.sum(logprobs[t] * targets[t])
     return loglik / (num_time_steps * num_examples)
Пример #3
0
 def log_marginal_likelihood(params, data):
     cluster_lls = []
     for log_proportion, mean, chol in zip(*unpack_params(params)):
         cov = np.dot(chol.T, chol) + 0.000001 * np.eye(D)
         cluster_log_likelihood = log_proportion + mvn.logpdf(data, mean, cov)
         cluster_lls.append(np.expand_dims(cluster_log_likelihood, axis=0))
     cluster_lls = np.concatenate(cluster_lls, axis=0)
     return np.sum(logsumexp(cluster_lls, axis=0))
Пример #4
0
def quick_grad_check(fun, arg0, extra_args=(), kwargs={}, verbose=True,
                     eps=EPS, rtol=RTOL, atol=ATOL, rs=None):
    """Checks the gradient of a function (w.r.t. to its first arg) in a random direction"""

    if verbose:
        print("Checking gradient of {0} at {1}".format(fun, arg0))

    if rs is None:
        rs = np.random.RandomState()

    random_dir = rs.standard_normal(np.shape(arg0))
    random_dir = random_dir / np.sqrt(np.sum(random_dir * random_dir))
    unary_fun = lambda x : fun(arg0 + x * random_dir, *extra_args, **kwargs)
    numeric_grad = unary_nd(unary_fun, 0.0, eps=eps)

    analytic_grad = np.sum(grad(fun)(arg0, *extra_args, **kwargs) * random_dir)

    assert np.allclose(numeric_grad, analytic_grad, rtol=rtol, atol=atol), \
        "Check failed! nd={0}, ad={1}".format(numeric_grad, analytic_grad)

    if verbose:
        print("Gradient projection OK (numeric grad: {0}, analytic grad: {1})".format(
            numeric_grad, analytic_grad))
def logsumexp(x):
    """Numerically stable log(sum(exp(x))), also defined in scipy.misc"""
    max_x = np.max(x)
    return max_x + np.log(np.sum(np.exp(x - max_x)))
 def gaussian_entropy(log_std):
     return 0.5 * D * (1.0 + np.log(2 * np.pi)) + np.sum(log_std)
Пример #7
0
 def objective(params):
     gp_params, latents = unpack_params(params)
     gp_likelihood = sum([log_marginal_likelihood(gp_params[i], latents, data[:, i])
                          for i in range(data_dimension)])
     latent_prior_likelihood = np.sum(norm.logpdf(latents))
     return -gp_likelihood - latent_prior_likelihood
    return r, p(r)


if __name__ == "__main__":
    # generate data
    npr.seed(0)
    data = negbin_sample(r=5, p=0.5, size=1000)

    # fit likelihood-extremizing parameters
    r, p = fit_maxlike(data, r_guess=1)

    # report fit
    print('Fit parameters:')
    print('r={r}, p={p}'.format(r=r, p=p))

    print('Check that we are at a local stationary point:')
    loglike = lambda r, p: np.sum(negbin_loglike(r, p, data))
    grad_both = multigrad(loglike, argnums=[0,1])
    print(grad_both(r, p))

    import matplotlib.pyplot as plt
    xm = data.max()
    plt.figure()
    plt.hist(data, bins=np.arange(xm+1)-0.5, normed=True, label='normed data counts')
    plt.xlim(0,xm)
    plt.plot(np.arange(xm), np.exp(negbin_loglike(r, p, np.arange(xm))), label='maxlike fit')
    plt.xlabel('k')
    plt.ylabel('p(k)')
    plt.legend(loc='best')
    plt.show()
 def logprob(weights, inputs, targets):
     log_prior = np.sum(norm.logpdf(weights, 0, weight_scale))
     preds = predictions(weights, inputs)
     log_lik = np.sum(norm.logpdf(preds, targets, noise_scale))
     return log_prior + log_lik
def training_loss(weights):
    # Training loss is the negative log-likelihood of the training labels.
    preds = logistic_predictions(weights, inputs)
    label_probabilities = preds * targets + (1 - preds) * (1 - targets)
    return -np.sum(np.log(label_probabilities))
Пример #11
0
def logsumexp(X, axis, keepdims=False):
    max_X = np.max(X)
    return max_X + np.log(np.sum(np.exp(X - max_X), axis=axis, keepdims=keepdims))
Пример #12
0
def logsumexp(X, axis=1):
    max_X = np.max(X)
    return max_X + np.log(np.sum(np.exp(X - max_X), axis=axis, keepdims=True))
Пример #13
0
from __future__ import absolute_import
import scipy.stats

import autogradwithbay.numpy as np
from autogradwithbay.scipy.special import digamma
from autogradwithbay.core import primitive

rvs = primitive(scipy.stats.dirichlet.rvs)
pdf = primitive(scipy.stats.dirichlet.pdf)
logpdf = primitive(scipy.stats.dirichlet.logpdf)

logpdf.defgrad(lambda ans, x, alpha: lambda g: g * (alpha - 1) / x, argnum=0)
logpdf.defgrad(lambda ans, x, alpha: lambda g: g * (digamma(np.sum(alpha)) - digamma(alpha) + np.log(x)), argnum=1)

# Same as log pdf, but multiplied by the pdf (ans).
pdf.defgrad(lambda ans, x, alpha: lambda g: g * ans * (alpha - 1) / x, argnum=0)
pdf.defgrad(lambda ans, x, alpha: lambda g: g * ans * (digamma(np.sum(alpha)) - digamma(alpha) + np.log(x)), argnum=1)
Пример #14
0
gamma        = primitive(scipy.special.gamma)
gammaln      = primitive(scipy.special.gammaln)
gammasgn     = primitive(scipy.special.gammasgn)
rgamma       = primitive(scipy.special.rgamma)
multigammaln = primitive(scipy.special.multigammaln)

gammasgn.defgrad_is_zero()
polygamma.defgrad_is_zero(argnums=(0,))
polygamma.defgrad(lambda ans, n, x: lambda g: g * polygamma(n + 1, x), argnum=1)
psi.defgrad(      lambda ans, x: lambda g: g * polygamma(1, x))
digamma.defgrad(  lambda ans, x: lambda g: g * polygamma(1, x))
gamma.defgrad(    lambda ans, x: lambda g: g * ans * psi(x))
gammaln.defgrad(  lambda ans, x: lambda g: g * psi(x))
rgamma.defgrad(   lambda ans, x: lambda g: g * psi(x) / -gamma(x))
multigammaln.defgrad(lambda ans, a, d:
    lambda g: g * np.sum(digamma(np.expand_dims(a, -1) - np.arange(d)/2.), -1))
multigammaln.defgrad_is_zero(argnums=(1,))


### Bessel functions ###

j0 = primitive(scipy.special.j0)
y0 = primitive(scipy.special.y0)
j1 = primitive(scipy.special.j1)
y1 = primitive(scipy.special.y1)
jn = primitive(scipy.special.jn)
yn = primitive(scipy.special.yn)

j0.defgrad(lambda ans, x: lambda g: -g * j1(x))
y0.defgrad(lambda ans, x: lambda g: -g * y1(x))
j1.defgrad(lambda ans, x: lambda g: g * (j0(x) - jn(2, x)) / 2.0)
Пример #15
0
def to_scalar(x):
    if isinstance(x, list)  or isinstance(x, ListNode) or \
       isinstance(x, tuple) or isinstance(x, TupleNode):
        return sum([to_scalar(item) for item in x])
    return np.sum(np.real(np.sin(x)))
 def example_func(y):
     z = y**2
     lse = logsumexp(z)
     return np.sum(lse)
 def sum_output(*args, **kwargs):
     return np.sum(fun(*args, **kwargs))
Пример #18
0
 def loss(W_vect, X, T):
     log_prior = -L2_reg * np.dot(W_vect, W_vect)
     log_lik = np.sum(predictions(W_vect, X) * T)
     return - log_prior - log_lik
def rbf_covariance(kernel_params, x, xp):
    output_scale = np.exp(kernel_params[0])
    lengthscales = np.exp(kernel_params[1:])
    diffs = np.expand_dims(x /lengthscales, 1)\
          - np.expand_dims(xp/lengthscales, 0)
    return output_scale * np.exp(-0.5 * np.sum(diffs**2, axis=2))
 def logprob(weights, inputs, targets):
     log_prior = -L2_reg * np.sum(weights**2, axis=1)
     preds = predictions(weights, inputs)
     log_lik = -np.sum((preds - targets)**2, axis=1)[:, 0] / noise_variance
     return log_prior + log_lik