Пример #1
0
def test_add_mul_mix_3(backendopt):

    for datatype in backendopt:
        T.set_backend(datatype)

        x2 = ad.Variable(name="x2", shape=[3])
        x3 = ad.Variable(name="x3", shape=[3])
        z = x2 * x2 + x2 + x3 + 3
        y = ad.sum(z * z + x3)

        grad_x2, grad_x3 = ad.gradients(y, [x2, x3])

        executor = ad.Executor([y, grad_x2, grad_x3])
        x2_val = 2 * T.ones(3)
        x3_val = 3 * T.ones(3)
        y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={
            x2: x2_val,
            x3: x3_val
        })

        z_val = x2_val * x2_val + x2_val + x3_val + 3
        expected_yval = z_val * z_val + x3_val
        expected_grad_x2_val = 2 * \
            (x2_val * x2_val + x2_val + x3_val + 3) * (2 * x2_val + 1)
        expected_grad_x3_val = 2 * (x2_val * x2_val + x2_val + x3_val + 3) + 1
        assert isinstance(y, ad.Node)
        assert T.array_equal(y_val, T.sum(expected_yval))
        assert T.array_equal(grad_x2_val, expected_grad_x2_val)
        assert T.array_equal(grad_x3_val, expected_grad_x3_val)
Пример #2
0
def test_add_mul_mix_2(backendopt):

    for datatype in backendopt:
        T.set_backend(datatype)

        x1 = ad.Variable(name="x1", shape=[3])
        x2 = ad.Variable(name="x2", shape=[3])
        x3 = ad.Variable(name="x3", shape=[3])
        x4 = ad.Variable(name="x4", shape=[3])
        y = ad.sum(x1 + x2 * x3 * x4)

        grad_x1, grad_x2, grad_x3, grad_x4 = ad.gradients(y, [x1, x2, x3, x4])

        executor = ad.Executor([y, grad_x1, grad_x2, grad_x3, grad_x4])
        x1_val = 1 * T.ones(3)
        x2_val = 2 * T.ones(3)
        x3_val = 3 * T.ones(3)
        x4_val = 4 * T.ones(3)
        y_val, grad_x1_val, grad_x2_val, grad_x3_val, grad_x4_val = executor.run(
            feed_dict={
                x1: x1_val,
                x2: x2_val,
                x3: x3_val,
                x4: x4_val
            })
        assert isinstance(y, ad.Node)
        assert T.array_equal(y_val, T.sum(x1_val + x2_val * x3_val * x4_val))
        assert T.array_equal(grad_x1_val, T.ones_like(x1_val))
        assert T.array_equal(grad_x2_val, x3_val * x4_val)
        assert T.array_equal(grad_x3_val, x2_val * x4_val)
        assert T.array_equal(grad_x4_val, x2_val * x3_val)
Пример #3
0
def conjugate_gradient(hess_fn, grads, error_tol, max_iters=250, x0=None):
    '''
        This solves the following problem:
        hess_fn(x) = grad
        return: (x)
    '''
    if not x0:
        x0 = [T.ones(grad.shape) for grad in grads]
    hvps = hess_fn(x0)
    r = group_minus(hvps, grads)
    p = group_negative(r)
    r_k_norm = group_dot(r, r)

    i = 0
    while True:
        Ap = hess_fn(p)
        alpha = r_k_norm / group_dot(p, Ap)
        x0 = group_add(x0, group_product(alpha, p))
        r = group_add(r, group_product(alpha, Ap))
        r_kplus1_norm = group_dot(r, r)
        beta = r_kplus1_norm / r_k_norm
        r_k_norm = r_kplus1_norm
        if float(r_kplus1_norm) < error_tol:
            break
        p = group_minus(group_product(beta, p), r)
        if i > max_iters:
            print(f'CG max iter reached.')
            break
        i += 1
    return x0
Пример #4
0
def test_mul_two_vars(backendopt):

    for datatype in backendopt:
        T.set_backend(datatype)

        x2 = ad.Variable(name="x2", shape=[3])
        x3 = ad.Variable(name="x3", shape=[3])
        y = ad.sum(x2 * x3)

        grad_x2, grad_x3 = ad.gradients(y, [x2, x3])

        executor = ad.Executor([y, grad_x2, grad_x3])
        x2_val = 2 * T.ones(3)
        x3_val = 3 * T.ones(3)
        y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={
            x2: x2_val,
            x3: x3_val
        })

        assert isinstance(y, ad.Node)
        assert T.array_equal(y_val, T.sum(x2_val * x3_val))
        assert T.array_equal(grad_x2_val, x3_val)
        assert T.array_equal(grad_x3_val, x2_val)
Пример #5
0
def test_negative(backendopt):

    for datatype in backendopt:
        T.set_backend(datatype)

        x2 = ad.Variable(name="x2", shape=[3])
        y = ad.sum(-x2)

        grad_x2, = ad.gradients(y, [x2])

        executor = ad.Executor([y, grad_x2])
        x2_val = 2 * T.ones(3)
        y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val})

        assert isinstance(y, ad.Node)
        assert T.array_equal(y_val, T.sum(-x2_val))
        assert T.array_equal(grad_x2_val, -T.ones_like(x2_val))
Пример #6
0
def test_jacobian_summation_einsum_2(backendopt):
    for datatype in backendopt:
        T.set_backend(datatype)
        x = ad.Variable(name="x", shape=[2, 2])
        y = ad.Variable(name="y", shape=[2, 2])
        out = ad.einsum('ij,ab->ab', x, y)

        grad_x, = ad.jacobians(out, [x])
        executor = ad.Executor([out, grad_x])
        x_val = T.tensor([[1., 2.], [3., 4.]])
        y_val = T.tensor([[5., 6.], [7., 8.]])

        out_val, grad_x_val = executor.run(feed_dict={x: x_val, y: y_val})

        expected_out_val = T.einsum('ij,ab->ab', x_val, y_val)
        expected_grad_x_val = T.einsum('ij,ab->abij', T.ones(x_val.shape),
                                       y_val)

        assert T.array_equal(out_val, expected_out_val)
        assert T.array_equal(grad_x_val, expected_grad_x_val)