Пример #1
0
def build_model():
    input_layer = ak.Input()
    cnn_layer = ak.ConvBlock()(input_layer)
    cnn_layer2 = ak.ConvBlock()(cnn_layer)
    dense_layer = ak.DenseBlock()(cnn_layer2)
    dense_layer2 = ak.DenseBlock()(dense_layer)
    output_layer = ak.ClassificationHead(num_classes=10)(dense_layer2)

    automodel = ak.auto_model.AutoModel(input_layer, output_layer, max_trials=20, seed=123, project_name='autoML')

    return automodel
Пример #2
0
def test_graph_save_load(tmp_path):
    input1 = ak.Input()
    input2 = ak.Input()
    output1 = ak.DenseBlock()(input1)
    output2 = ak.ConvBlock()(input2)
    output = ak.Merge()([output1, output2])
    output1 = ak.RegressionHead()(output)
    output2 = ak.ClassificationHead()(output)

    graph = graph_module.Graph(
        inputs=[input1, input2],
        outputs=[output1, output2],
        override_hps=[
            hp_module.Choice("dense_block_1/num_layers", [6], default=6)
        ],
    )
    path = os.path.join(tmp_path, "graph")
    graph.save(path)
    graph = graph_module.load_graph(path)

    assert len(graph.inputs) == 2
    assert len(graph.outputs) == 2
    assert isinstance(graph.inputs[0].out_blocks[0], ak.DenseBlock)
    assert isinstance(graph.inputs[1].out_blocks[0], ak.ConvBlock)
    assert isinstance(graph.override_hps[0], hp_module.Choice)
Пример #3
0
def test_graph_can_init_with_one_missing_output():
    input_node = ak.ImageInput()
    output_node = ak.ConvBlock()(input_node)
    output_node = ak.RegressionHead()(output_node)
    ak.ClassificationHead()(output_node)

    graph_module.Graph(input_node, output_node)
Пример #4
0
def test_graph_save_load(tmp_dir):
    input1 = ak.Input()
    input2 = ak.Input()
    output1 = ak.DenseBlock()(input1)
    output2 = ak.ConvBlock()(input2)
    output = ak.Merge()([output1, output2])
    output1 = ak.RegressionHead()(output)
    output2 = ak.ClassificationHead()(output)

    graph = graph_module.HyperGraph(inputs=[input1, input2],
                                    outputs=[output1, output2],
                                    override_hps=[
                                        hp_module.Choice(
                                            'dense_block_1/num_layers', [6],
                                            default=6)
                                    ])
    path = os.path.join(tmp_dir, 'graph')
    graph.save(path)
    config = graph.get_config()
    graph = graph_module.HyperGraph.from_config(config)
    graph.reload(path)

    assert len(graph.inputs) == 2
    assert len(graph.outputs) == 2
    assert isinstance(graph.inputs[0].out_blocks[0], ak.DenseBlock)
    assert isinstance(graph.inputs[1].out_blocks[0], ak.ConvBlock)
    assert isinstance(graph.override_hps[0], hp_module.Choice)
Пример #5
0
def test_graph_compile_with_adadelta():
    input_node = ak.ImageInput(shape=(32, 32, 3))
    output_node = ak.ConvBlock()(input_node)
    output_node = ak.RegressionHead(output_shape=(1, ))(output_node)

    graph = graph_module.Graph(input_node, output_node)
    hp = kerastuner.HyperParameters()
    hp.values = {"optimizer": "adadelta"}
    graph.build(hp)
Пример #6
0
    def create_image_regressor(self):
        input_node = ak.ImageInput()
        output_node = ak.ConvBlock()(input_node)
        output_node = ak.DenseBlock()(output_node)
        output_node = ak.RegressionHead()(output_node)

        reg = ak.AutoModel(inputs=input_node,
                           outputs=output_node,
                           max_trials=10)

        return reg
Пример #7
0
def test_functional_api(tmp_dir):
    # Prepare the data.
    num_instances = 20
    (image_x, train_y), (test_x, test_y) = mnist.load_data()
    (text_x, train_y), (test_x, test_y) = common.imdb_raw()
    (structured_data_x, train_y), (test_x, test_y) = common.dataframe_numpy()

    image_x = image_x[:num_instances]
    text_x = text_x[:num_instances]
    structured_data_x = structured_data_x[:num_instances]
    classification_y = common.generate_one_hot_labels(
        num_instances=num_instances, num_classes=3)
    regression_y = common.generate_data(num_instances=num_instances,
                                        shape=(1, ))

    # Build model and train.
    image_input = ak.ImageInput()
    output = ak.Normalization()(image_input)
    output = ak.ImageAugmentation()(output)
    outputs1 = ak.ResNetBlock(version='next')(image_input)
    outputs2 = ak.XceptionBlock()(image_input)
    image_output = ak.Merge()((outputs1, outputs2))

    structured_data_input = ak.StructuredDataInput(
        column_names=common.COLUMN_NAMES_FROM_CSV,
        column_types=common.COLUMN_TYPES_FROM_CSV)
    structured_data_output = ak.FeatureEngineering()(structured_data_input)
    structured_data_output = ak.DenseBlock()(structured_data_output)

    text_input = ak.TextInput()
    outputs1 = ak.TextToIntSequence()(text_input)
    outputs1 = ak.EmbeddingBlock()(outputs1)
    outputs1 = ak.ConvBlock(separable=True)(outputs1)
    outputs1 = ak.SpatialReduction()(outputs1)
    outputs2 = ak.TextToNgramVector()(text_input)
    outputs2 = ak.DenseBlock()(outputs2)
    text_output = ak.Merge()((outputs1, outputs2))

    merged_outputs = ak.Merge()(
        (structured_data_output, image_output, text_output))

    regression_outputs = ak.RegressionHead()(merged_outputs)
    classification_outputs = ak.ClassificationHead()(merged_outputs)
    automodel = ak.GraphAutoModel(
        inputs=[image_input, text_input, structured_data_input],
        directory=tmp_dir,
        outputs=[regression_outputs, classification_outputs],
        max_trials=2,
        seed=common.SEED)

    automodel.fit((image_x, text_x, structured_data_x),
                  (regression_y, classification_y),
                  validation_split=0.2,
                  epochs=2)
Пример #8
0
def functional_api():
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    input_node = ak.ImageInput()
    output_node = input_node
    output_node = ak.Normalization()(output_node)
    output_node = ak.ConvBlock()(output_node)
    output_node = ak.SpatialReduction()(output_node)
    output_node = ak.DenseBlock()(output_node)
    output_node = ak.ClassificationHead()(output_node)
    clf = ak.GraphAutoModel(input_node, output_node, seed=5, max_trials=3)
    clf.fit(x_train, y_train, validation_split=0.2)
    return clf.evaluate(x_test, y_test)
Пример #9
0
def test_functional_api(tmp_path):
    # Prepare the data.
    num_instances = 80
    (image_x, train_y), (test_x, test_y) = mnist.load_data()
    (text_x, train_y), (test_x, test_y) = utils.imdb_raw()
    (structured_data_x, train_y), (test_x, test_y) = utils.dataframe_numpy()

    image_x = image_x[:num_instances]
    text_x = text_x[:num_instances]
    structured_data_x = structured_data_x[:num_instances]
    classification_y = utils.generate_one_hot_labels(
        num_instances=num_instances, num_classes=3)
    regression_y = utils.generate_data(num_instances=num_instances,
                                       shape=(1, ))

    # Build model and train.
    image_input = ak.ImageInput()
    output = ak.Normalization()(image_input)
    output = ak.ImageAugmentation()(output)
    outputs1 = ak.ResNetBlock(version='next')(output)
    outputs2 = ak.XceptionBlock()(output)
    image_output = ak.Merge()((outputs1, outputs2))

    structured_data_input = ak.StructuredDataInput()
    structured_data_output = ak.CategoricalToNumerical()(structured_data_input)
    structured_data_output = ak.DenseBlock()(structured_data_output)

    text_input = ak.TextInput()
    outputs1 = ak.TextToIntSequence()(text_input)
    outputs1 = ak.Embedding()(outputs1)
    outputs1 = ak.ConvBlock(separable=True)(outputs1)
    outputs1 = ak.SpatialReduction()(outputs1)
    outputs2 = ak.TextToNgramVector()(text_input)
    outputs2 = ak.DenseBlock()(outputs2)
    text_output = ak.Merge()((outputs1, outputs2))

    merged_outputs = ak.Merge()(
        (structured_data_output, image_output, text_output))

    regression_outputs = ak.RegressionHead()(merged_outputs)
    classification_outputs = ak.ClassificationHead()(merged_outputs)
    automodel = ak.AutoModel(
        inputs=[image_input, text_input, structured_data_input],
        directory=tmp_path,
        outputs=[regression_outputs, classification_outputs],
        max_trials=2,
        tuner=ak.Hyperband,
        seed=utils.SEED)

    automodel.fit((image_x, text_x, structured_data_x),
                  (regression_y, classification_y),
                  validation_split=0.2,
                  epochs=1)
Пример #10
0
def CreateSupergraph(output_dir, hp_tuner):
    input_node = ak.Input()
    conv2d_1 = ak.ConvBlock(num_blocks=1, num_layers=3,
                            max_pooling=True, dropout=0)(input_node)
    dense_1 = ak.DenseBlock(dropout=0)(conv2d_1)
    output_node = ak.ClassificationHead(num_classes=4,
                                        metrics=['accuracy'])(dense_1)

    automodel = ak.AutoModel(inputs=input_node, outputs=output_node,
                             max_trials=3, directory=output_dir, project_name="autoML",
                             tuner=hp_tuner, seed=123)

    return automodel
def test_text_and_structured_data(tmp_path):
    # Prepare the data.
    num_instances = 80
    (x_text, y_train), (x_test, y_test) = utils.imdb_raw()
    x_structured_data = pd.read_csv(utils.TRAIN_CSV_PATH)

    x_text = x_text[:num_instances]
    x_structured_data = x_structured_data[:num_instances]
    y_classification = utils.generate_one_hot_labels(
        num_instances=num_instances, num_classes=3)
    y_regression = utils.generate_data(num_instances=num_instances,
                                       shape=(1, ))

    # Build model and train.
    structured_data_input = ak.StructuredDataInput()
    structured_data_output = ak.CategoricalToNumerical()(structured_data_input)
    structured_data_output = ak.DenseBlock()(structured_data_output)

    text_input = ak.TextInput()
    outputs1 = ak.TextToIntSequence()(text_input)
    outputs1 = ak.Embedding()(outputs1)
    outputs1 = ak.ConvBlock(separable=True)(outputs1)
    outputs1 = ak.SpatialReduction()(outputs1)
    outputs2 = ak.TextToNgramVector()(text_input)
    outputs2 = ak.DenseBlock()(outputs2)
    text_output = ak.Merge()((outputs1, outputs2))

    merged_outputs = ak.Merge()((structured_data_output, text_output))

    regression_outputs = ak.RegressionHead()(merged_outputs)
    classification_outputs = ak.ClassificationHead()(merged_outputs)
    automodel = ak.AutoModel(
        inputs=[text_input, structured_data_input],
        directory=tmp_path,
        outputs=[regression_outputs, classification_outputs],
        max_trials=2,
        tuner=ak.Hyperband,
        seed=utils.SEED,
    )

    automodel.fit(
        (x_text, x_structured_data),
        (y_regression, y_classification),
        validation_split=0.2,
        epochs=1,
    )
Пример #12
0
def test_conv_block(tmp_dir):
    x_train = np.random.rand(100, 3, 3, 3)
    y_train = np.random.randint(10, size=100)
    y_train = tf.keras.utils.to_categorical(y_train)

    input_node = ak.Input()
    output_node = input_node
    output_node = ak.ConvBlock()(output_node)
    output_node = ak.ClassificationHead()(output_node)

    input_node.shape = (3, 3, 3)
    output_node[0].shape = (10,)

    graph = ak.GraphAutoModel(input_node, output_node, directory=tmp_dir)
    model = graph.build(kerastuner.HyperParameters())
    model.fit(x_train, y_train, epochs=1, batch_size=100, verbose=False)
    result = model.predict(x_train)

    assert result.shape == (100, 10)
Пример #13
0
    def test_minist(self):

        (x_train, y_train), (x_test, y_test) = mnist.load_data()
        print(x_train.shape)  # (60000, 28, 28)
        print(y_train.shape)  # (60000,)
        print(y_train[:3])  # array([7, 2, 1], dtype=uint8)

        input_node = ak.ImageInput()
        output_node = ak.ConvBlock()(input_node)
        output_node = ak.DenseBlock()(output_node)
        output_node = ak.ClassificationHead()(output_node)

        clf = ak.AutoModel(inputs=input_node,
                           outputs=output_node,
                           max_trials=10)
        clf.fit(x_train, y_train)

        model = clf.export_model()
        print(type(model))
        model.save('./auto_model.hd5')
Пример #14
0
def functional_api():
    max_features = 20000
    max_words = 400
    (x_train, y_train), (x_test, y_test) = tf.keras.datasets.imdb.load_data(
        num_words=max_features, index_from=3)
    x_train = tf.keras.preprocessing.sequence.pad_sequences(x_train,
                                                            maxlen=max_words)
    x_test = tf.keras.preprocessing.sequence.pad_sequences(x_test,
                                                           maxlen=max_words)
    print(x_train.dtype)
    print(x_train[:10])
    input_node = ak.Input()
    output_node = input_node
    output_node = ak.EmbeddingBlock(max_features=max_features)(output_node)
    output_node = ak.ConvBlock()(output_node)
    output_node = ak.SpatialReduction()(output_node)
    output_node = ak.DenseBlock()(output_node)
    output_node = ak.ClassificationHead()(output_node)
    clf = ak.AutoModel(input_node, output_node, seed=5, max_trials=3)
    clf.fit(x_train, y_train, validation_split=0.2)
    return clf.evaluate(x_test, y_test)
Пример #15
0
def test_graph_save_load(tmp_path):
    input1 = ak.Input()
    input2 = ak.Input()
    output1 = ak.DenseBlock()(input1)
    output2 = ak.ConvBlock()(input2)
    output = ak.Merge()([output1, output2])
    output1 = ak.RegressionHead()(output)
    output2 = ak.ClassificationHead()(output)

    graph = graph_module.Graph(
        inputs=[input1, input2],
        outputs=[output1, output2],
    )
    path = os.path.join(tmp_path, "graph")
    graph.save(path)
    graph = graph_module.load_graph(path)

    assert len(graph.inputs) == 2
    assert len(graph.outputs) == 2
    assert isinstance(graph.inputs[0].out_blocks[0], ak.DenseBlock)
    assert isinstance(graph.inputs[1].out_blocks[0], ak.ConvBlock)
Пример #16
0
def test_conv_block(tmp_dir):
    x_train = np.random.rand(100, 3, 3, 3)
    y_train = np.random.randint(10, size=100)
    y_train = tf.keras.utils.to_categorical(y_train)

    input_node = ak.Input()
    output_node = input_node
    output_node = ak.ConvBlock()(output_node)
    output_node = ak.ClassificationHead()(output_node)

    input_node.shape = (3, 3, 3)
    output_node[0].shape = (10,)

    graph = ak.GraphAutoModel(input_node, output_node,
                              directory=tmp_dir,
                              max_trials=1)
    graph.fit(x_train, y_train,
              epochs=1,
              batch_size=100,
              verbose=False,
              validation_split=0.2)
    result = graph.predict(x_train)

    assert result.shape == (100, 10)
Пример #17
0
    id5 --> id6
    id7(StructuredDataInput) --> id8(CategoricalToNumerical)
    id8 --> id9(DenseBlock)
    id6 --> id10(Merge)
    id9 --> id10
    id10 --> id11(Classification Head)
    id10 --> id12(Regression Head)
</div>
"""

import autokeras as ak

input_node1 = ak.ImageInput()
output_node = ak.Normalization()(input_node1)
output_node = ak.ImageAugmentation()(output_node)
output_node1 = ak.ConvBlock()(output_node)
output_node2 = ak.ResNetBlock(version='v2')(output_node)
output_node1 = ak.Merge()([output_node1, output_node2])

input_node2 = ak.StructuredDataInput()
output_node = ak.CategoricalToNumerical()(input_node2)
output_node2 = ak.DenseBlock()(output_node)

output_node = ak.Merge()([output_node1, output_node2])
output_node1 = ak.ClassificationHead()(output_node)
output_node2 = ak.RegressionHead()(output_node)

auto_model = ak.AutoModel(inputs=[input_node1, input_node2],
                          outputs=[output_node1, output_node2],
                          overwrite=True,
                          max_trials=2)
Пример #18
0
[functional API](https://www.tensorflow.org/guide/keras/functional) of Keras.
Basically, you are building a graph, whose edges are blocks and the nodes are intermediate outputs of blocks.
To add an edge from `input_node` to `output_node` with
`output_node = ak.[some_block]([block_args])(input_node)`.

You can even also use more fine grained blocks to customize the search space even
further. See the following example.
"""

import autokeras as ak

input_node = ak.TextInput()
output_node = ak.TextToIntSequence()(input_node)
output_node = ak.Embedding()(output_node)
# Use separable Conv layers in Keras.
output_node = ak.ConvBlock(separable=True)(output_node)
output_node = ak.ClassificationHead()(output_node)
clf = ak.AutoModel(inputs=input_node, outputs=output_node, max_trials=1)
clf.fit(x_train, y_train, epochs=2)
"""
## Data Format
The AutoKeras TextClassifier is quite flexible for the data format.

For the text, the input data should be one-dimensional 
For the classification labels, AutoKeras accepts both plain labels, i.e. strings or
integers, and one-hot encoded encoded labels, i.e. vectors of 0s and 1s.

We also support using [tf.data.Dataset](
https://www.tensorflow.org/api_docs/python/tf/data/Dataset?version=stable) format for
the training data.
The labels have to be one-hot encoded for multi-class
Пример #19
0
y_train = np.zeros(num_instances).astype(np.float32)
y_train[0 : int(num_instances / 2)] = 1
x_test = np.random.rand(num_instances, num_features).astype(np.float32)
y_test = np.zeros(num_instances).astype(np.float32)
y_train[0 : int(num_instances / 2)] = 1

x_train = np.expand_dims(
    x_train, axis=2
)  # This step it's very important an CNN will only accept this data shape
print(x_train.shape)
print(y_train.shape)


# Prepare Automodel for search
input_node = ak.Input()
output_node = ak.ConvBlock()(input_node)
# output_node = ak.DenseBlock()(output_node) #optional
# output_node = ak.SpatialReduction()(output_node) #optional
output_node = ak.ClassificationHead(num_classes=2, multi_label=True)(output_node)

auto_model = ak.AutoModel(
    inputs=input_node, outputs=output_node, overwrite=True, max_trials=1
)


# Search
auto_model.fit(x_train, y_train, epochs=1)
print(auto_model.evaluate(x_test, y_test))


# Export as a Keras Model