Пример #1
0
        if k in train_image_indices:
            train = 1
            split = TRAIN_ID
        if train:
            num_objects = min(max(num_objs_rv.rvs(size=1)[0] + 1, min_num_objects), num_train)
            obj_names = [objects[i] for i in np.random.choice(train_indices, size=num_objects, replace=False)]
        else:
            num_objects = min(max(num_objs_rv.rvs(size=1)[0] + 1, min_num_objects), num_test)
            obj_names = [objects[i] for i in np.random.choice(test_indices, size=num_objects, replace=False)]
            
        # get human consent
        message = 'Please place %d objects:\n' %(num_objects)
        for name in obj_names:
            message += '\t{}\n'.format(name)
        message += 'Hit ENTER when finished.'
        utils.keyboard_input(message=message)

        # capture
        for sensor_name, sensor in sensors.iteritems():
            logging.info('Capturing images from sensor %s' %(sensor_name))

            # read pose and intrinsics
            sensor_pose = sensor_poses[sensor_name]
            camera_intr = camera_intrs[sensor_name]
            workspace_im = workspace_ims[sensor_name]
            dataset = datasets[sensor_name]
            T_camera_world = sensor_pose
            datapoint = dataset.datapoint_template
            
            # read raw images
            raw_color_im, raw_depth_im, _ = sensor.frames()
    def __init__(self, filename, config, access_mode=WRITE_ACCESS):
        # read params
        self._filename = filename
        self._config = config
        self._datapoints_per_file = config['datapoints_per_file']
        self._access_mode = access_mode

        # check valid access mode
        if access_mode == READ_WRITE_ACCESS:
            raise ValueError('Read and write not supported simultaneously.')

        # open dataset folder
        # create dataset if necessary
        if not os.path.exists(
                self._filename) and access_mode != READ_ONLY_ACCESS:
            os.mkdir(self._filename)
        # throw error if dataset doesn't exist
        elif not os.path.exists(
                self._filename) and access_mode == READ_ONLY_ACCESS:
            raise ValueError('Dataset %s does not exist!' % (self._filename))
        # check dataset empty
        elif os.path.exists(self._filename) and len(os.listdir(
                self._filename)) > 0 and access_mode == WRITE_ACCESS:
            human_input = utils.keyboard_input(
                'Dataset %s exists. Overwrite?' % (self.filename), yesno=True)
            if human_input.lower() == 'n':
                raise ValueError('User opted not to overwrite dataset')

        # save config to location
        if access_mode != READ_ONLY_ACCESS:
            config_filename = os.path.join(self._filename, 'config.json')
            json.dump(self._config, open(config_filename, 'w'))

        # init data storage
        self._allocate_tensors()

        # init state variables
        if access_mode == WRITE_ACCESS:
            # init no files
            self._num_tensors = 0
            self._num_datapoints = 0
            if not os.path.exists(self.tensor_dir):
                os.mkdir(self.tensor_dir)

        elif access_mode == READ_ONLY_ACCESS:
            # read the number of tensor files
            tensor_dir = self.tensor_dir
            tensor_filenames = utils.filenames(tensor_dir,
                                               tag=COMPRESSED_TENSOR_EXT,
                                               sorted=True)
            file_nums = np.array(
                [int(filename[-9:-4]) for filename in tensor_filenames])

            self._num_tensors = np.max(file_nums) + 1

            # compute the number of datapoints
            last_tensor_ind = np.where(file_nums == self._num_tensors -
                                       1)[0][0]
            last_tensor_data = np.load(
                tensor_filenames[last_tensor_ind])['arr_0']
            self._num_datapoints_last_file = last_tensor_data.shape[0]
            self._num_datapoints = self._datapoints_per_file * (
                self._num_tensors - 1) + self._num_datapoints_last_file

            # form index maps for each file
            self._index_to_file_num = {}
            self._file_num_to_indices = {}

            # set file index
            cur_file_num = 0
            start_datapoint_index = 0

            # set mapping from file num to datapoint indices
            self._file_num_to_indices[cur_file_num] = np.arange(
                self._datapoints_per_file) + start_datapoint_index

            for ind in range(self._num_datapoints):
                # set mapping from index to file num
                self._index_to_file_num[ind] = cur_file_num

                # update to the next file
                if ind > 0 and ind % self._datapoints_per_file == 0:
                    cur_file_num += 1
                    start_datapoint_index += self._datapoints_per_file

                    # set mapping from file num to datapoint indices
                    if cur_file_num < self._num_tensors - 1:
                        self._file_num_to_indices[cur_file_num] = np.arange(
                            self._datapoints_per_file) + start_datapoint_index
                    else:
                        self._file_num_to_indices[cur_file_num] = np.arange(
                            self._num_datapoints_last_file
                        ) + start_datapoint_index
        else:
            raise ValueError('Access mode %s not supported' % (access_mode))
Пример #3
0
                n_samples=obj_config['stp_num_samples'],
                threshold=obj_config['stp_min_prob']
            )

            for push_num in range(10):
                push_idx = None
                # push_idx = 33
                sample_id = 0
                num_toppled, pose_angles, actual_poses = [], [], []
                print '\n\n\n\n\n\nSTARTING DIFFERENT PUSH', push_num
                while sample_id < 10:
                    sample_id += 1
                    # sim_point_cloud_masked = get_sim_point_cloud(depth_scene, env.state.obj)
                    usr_input = 'n'
                    while usr_input != 'y' and usr_input != 'a':
                        usr_input = utils.keyboard_input('\n\nPut the object in position y: continue, v: vis pose, a: abort push[y/v/a]:')
                        if usr_input == 'v':
                            vis3d.figure()
                            env.state.obj.T_obj_world = orig_pose
                            env.render_3d_scene()
                            vis3d.show(starting_camera_pose=CAMERA_POSE)
                    if usr_input == 'a':
                        print 'trying different push'
                        push_idx = None
                        sample_id = 0
                        num_toppled, pose_angles, actual_poses = [], [], []
                        continue

                    usr_input = 'n'
                    while usr_input != 'y':
                        s2r = sim_to_real_tf(sim_point_cloud_masked, vis=True)