def test_custom_trans_primitives(self): """ Test changing the default trans primitives. """ feat = feature.Creator(data, target, features) feat.transform(trans_primitives=["add_numeric"]) custom_n_cols = len(feat._x.columns) feat = feature.Creator(data, target, features) feat.transform(trans_primitives=None) default_n_cols = len(feat._x.columns) assert default_n_cols > custom_n_cols
def test_custom_max_depth(self): """ Test changing the default trans primitives. """ feat = feature.Creator(data, target, features) feat.transform(trans_primitives=["greater_than", "and"], max_depth=1) depth1_n_cols = len(feat._x.columns) feat = feature.Creator(data, target, features) feat.transform(trans_primitives=["greater_than", "and"], max_depth=2) depth2_n_cols = len(feat._x.columns) assert depth2_n_cols > depth1_n_cols
def test_not_all_nan(self): """ Test that no NA features are created. """ feat = feature.Creator(data, target, features) feat.transform(trans_primitives=["greater_than"]) before = len(feat._x.columns) after = len(feat._x.dropna(1, how="all").columns) assert before == after
def test_create(self): """ Test creating variables. """ feat = feature.Creator(data, target, features) old_n_cols = len(feat._x.columns) feat.transform() new_n_cols = len(feat._x.columns) assert new_n_cols > old_n_cols
def test_export_files(self): """ Test if files are exported accordingly. """ feat = feature.Creator(data, target, features) feat.transform( trans_primitives=["greater_than"], entity_set_folder_name="entityset", features_file_name="features.json", ) assert os.path.exists("entityset") and os.path.exists("features.json")
def test_export_files(self): """ Test if files are exported accordingly. """ feat = feature.Creator(data, target, features) feat.transform( trans_primitives=["greater_than"], entity_set_folder_name="entityset", features_file_name="features.json", ) feat_matrix = feature.load("entityset", "features.json") pd.testing.assert_frame_equal(feat._x, feat_matrix)
def setup_class(cls): cls.feat = feature.Creator(data, target, features)
def test_not_single_value(self): """ Test that no single values features are created. """ feat = feature.Creator(data, target, features) feat.transform(trans_primitives=["greater_than"]) uniques_count = [len(feat._x[col].unique()) for col in feat._x.columns] assert 1 not in uniques_count