Пример #1
0
def make_li_blur_stack():

    image_0 = np.array([[0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0],
                        [0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0]])
    psf_0 = ccd.PSF(array=(np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0],
                                     [1.0, 1.0, 1.0]])),
                    pixel_scale=1.0,
                    renormalize=False)
    ccd_0 = ccd.CCDData(image_0,
                        pixel_scale=1.0,
                        psf=psf_0,
                        noise_map=np.ones((4, 4)))

    mask_0 = np.array([[True, True, True, True], [True, False, False, True],
                       [True, False, False, True], [True, True, True, True]])
    mask_0 = msk.Mask(array=mask_0, pixel_scale=1.0)

    image_1 = np.array([[0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0],
                        [0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0]])
    psf_1 = ccd.PSF(array=(np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0],
                                     [1.0, 1.0, 1.0]])),
                    pixel_scale=1.0,
                    renormalize=False)
    ccd_1 = ccd.CCDData(image_1,
                        pixel_scale=1.0,
                        psf=psf_1,
                        noise_map=np.ones((4, 4)))

    mask_1 = np.array([[True, True, True, True], [True, False, False, True],
                       [True, False, False, True], [True, True, True, True]])
    mask_1 = msk.Mask(array=mask_1, pixel_scale=1.0)

    return lds.LensDataStack(ccd_datas=[ccd_0, ccd_1],
                             masks=[mask_0, mask_1],
                             sub_grid_size=1)
Пример #2
0
    def test__same_as_above__but_3x4_image(self):

        ma = mask.Mask(array=np.array([[True, False, True, True],
                                       [False, False, False, False],
                                       [True, False, True, True]]),
                       pixel_scale=1.0)

        regular_grid = grids.RegularGrid.from_mask(mask=ma)

        adaptive_image_grid = pixelizations.ImagePlanePixelization(shape=(3,
                                                                          4))

        pix_grid = adaptive_image_grid.image_plane_pix_grid_from_regular_grid(
            regular_grid=regular_grid)

        assert pix_grid.total_sparse_pixels == 6
        assert (pix_grid.sparse_to_unmasked_sparse == np.array(
            [1, 4, 5, 6, 7, 9])).all()
        assert (pix_grid.unmasked_sparse_to_sparse == np.array(
            [0, 0, 1, 1, 1, 2, 3, 4, 5, 5, 5, 5])).all()
        assert (pix_grid.regular_to_unmasked_sparse == np.array(
            [1, 4, 5, 6, 7, 9])).all()
        assert (pix_grid.regular_to_sparse == np.array([0, 1, 2, 3, 4,
                                                        5])).all()
        assert (pix_grid.sparse_grid == np.array([[1.0, -0.5], [0.0, -1.5],
                                                  [0.0, -0.5], [0.0, 0.5],
                                                  [0.0, 1.5], [-1.0,
                                                               -0.5]])).all()
Пример #3
0
    def test__solution_different_values__simple_blurred_mapping_matrix__correct_reconstructed_image(self):

        matrix_shape = (3,3)

        msk = mask.Mask(array=np.array([[True, True, True],
                                        [False, False, False],
                                        [True, True, True]]), pixel_scale=1.0)

        grid_stack = grids.GridStack.grid_stack_from_mask_sub_grid_size_and_psf_shape(mask=msk, sub_grid_size=1,
                                                                                         psf_shape=(1,1))

        inv = inversions.Inversion(image_1d=np.ones(9), noise_map_1d=np.ones(9), convolver=MockConvolver(matrix_shape),
                                   mapper=MockMapper(matrix_shape, grid_stack), regularization=MockRegularization(matrix_shape))

        inv.solution_vector = np.array([1.0, 2.0, 3.0, 4.0])

        inv.blurred_mapping_matrix = np.array([[1.0, 1.0, 1.0, 1.0],
                                               [1.0, 0.0, 1.0, 1.0],
                                               [1.0, 0.0, 0.0, 0.0]])

        # # CCD pixel 0 maps to 4 pixs pixxels -> value is 1.0 + 2.0 + 3.0 + 4.0 = 10.0
        # # CCD pixel 1 maps to 3 pixs pixxels -> value is 1.0 + 3.0 + 4.0
        # # CCD pixel 2 maps to 1 pixs pixxels -> value is 1.0

        assert (inv.reconstructed_data_vector == np.array([10.0, 8.0, 1.0])).all()
        assert (inv.reconstructed_data == np.array([[0.0, 0.0, 0.0],
                                                    [10.0, 8.0, 1.0],
                                                    [0.0, 0.0, 0.0]]))
Пример #4
0
    def test__pixelization_regular_grid_from_regular_grid__sets_up_with_correct_shape_and_pixel_scales(
            self):

        ma = mask.Mask(array=np.array([[False, False, False],
                                       [False, False, False],
                                       [False, False, False]]),
                       pixel_scale=1.0)

        regular_grid = grids.RegularGrid.from_mask(mask=ma)

        adaptive_image_grid = pixelizations.ImagePlanePixelization(shape=(3,
                                                                          3))

        pix_grid = adaptive_image_grid.image_plane_pix_grid_from_regular_grid(
            regular_grid=regular_grid)

        assert pix_grid.shape == (3, 3)
        assert pix_grid.pixel_scales == (1.0, 1.0)
        assert pix_grid.total_sparse_pixels == 9
        assert (pix_grid.sparse_to_unmasked_sparse == np.array(
            [0, 1, 2, 3, 4, 5, 6, 7, 8])).all()
        assert (pix_grid.unmasked_sparse_to_sparse == np.array(
            [0, 1, 2, 3, 4, 5, 6, 7, 8])).all()
        assert (pix_grid.regular_to_unmasked_sparse == np.array(
            [0, 1, 2, 3, 4, 5, 6, 7, 8])).all()
        assert (pix_grid.regular_to_sparse == np.array(
            [0, 1, 2, 3, 4, 5, 6, 7, 8])).all()
        assert (pix_grid.sparse_grid == np.array([[1.0, -1.0], [1.0, 0.0],
                                                  [1.0, 1.0], [0.0, -1.0],
                                                  [0.0, 0.0], [0.0, 1.0],
                                                  [-1.0, -1.0], [-1.0, 0.0],
                                                  [-1.0, 1.0]])).all()
        assert pix_grid.regular_grid == pytest.approx(regular_grid, 1e-4)
Пример #5
0
def make_grid_stack():
    ma = mask.Mask(np.array([[True, True, True, True],
                             [True, False, False, True],
                             [True, True, True, True]]),
                   pixel_scale=6.0)

    grid_stack = grids.GridStack.grid_stack_from_mask_sub_grid_size_and_psf_shape(
        mask=ma, sub_grid_size=2, psf_shape=(3, 3))

    # Manually overwrite a set of cooridnates to make tests of grid_stacks and defledctions straightforward

    grid_stack.regular[0] = np.array([1.0, 1.0])
    grid_stack.regular[1] = np.array([1.0, 0.0])
    grid_stack.sub[0] = np.array([1.0, 1.0])
    grid_stack.sub[1] = np.array([1.0, 0.0])
    grid_stack.sub[2] = np.array([1.0, 1.0])
    grid_stack.sub[3] = np.array([1.0, 0.0])
    grid_stack.sub[4] = np.array([-1.0, 2.0])
    grid_stack.sub[5] = np.array([-1.0, 4.0])
    grid_stack.sub[6] = np.array([1.0, 2.0])
    grid_stack.sub[7] = np.array([1.0, 4.0])
    grid_stack.blurring[0] = np.array([1.0, 0.0])
    grid_stack.blurring[1] = np.array([-6.0, -3.0])
    grid_stack.blurring[2] = np.array([-6.0, 3.0])
    grid_stack.blurring[3] = np.array([-6.0, 9.0])
    grid_stack.blurring[4] = np.array([0.0, -9.0])
    grid_stack.blurring[5] = np.array([0.0, 9.0])
    grid_stack.blurring[6] = np.array([6.0, -9.0])
    grid_stack.blurring[7] = np.array([6.0, -3.0])
    grid_stack.blurring[8] = np.array([6.0, 3.0])
    grid_stack.blurring[9] = np.array([6.0, 9.0])

    return grid_stack
Пример #6
0
    def test___3x3_padded_image__one_psf_blurs__other_asymmetric(self):

        mask = msk.Mask(array=np.array([[True, True,
                                         True], [True, False, True],
                                        [True, True, True]]),
                        pixel_scale=1.0)

        padded_grid_stack = grids.GridStack.padded_grid_stack_from_mask_sub_grid_size_and_psf_shape(
            mask=mask, sub_grid_size=1, psf_shape=(3, 3))

        psf_0 = im.PSF(array=(np.array([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0],
                                        [0.0, 0.0, 0.0]])),
                       pixel_scale=1.0)

        psf_1 = im.PSF(array=(np.array([[0.0, 3.0, 0.0], [0.0, 1.0, 2.0],
                                        [0.0, 0.0, 0.0]])),
                       pixel_scale=1.0)

        unmasked_image_1d_1 = np.zeros(25)
        unmasked_image_1d_1[12] = 1.0

        unmasked_blurred_images_of_datas = \
            stack_util.unmasked_blurred_image_of_datas_from_padded_grid_stacks_psfs_and_unmasked_images(
            padded_grid_stacks=[padded_grid_stack, padded_grid_stack], psfs=[psf_0, psf_1],
            unmasked_images_1d=[np.ones(25), unmasked_image_1d_1])

        assert (unmasked_blurred_images_of_datas[0] == np.ones((3, 3))).all()
        assert (unmasked_blurred_images_of_datas[1] == np.array(
            [[0.0, 3.0, 0.0], [0.0, 1.0, 2.0], [0.0, 0.0, 0.0]])).all()
Пример #7
0
    def grid_stack_for_simulation(cls,
                                  shape,
                                  pixel_scale,
                                  psf_shape,
                                  sub_grid_size=2):
        """Setup a grid-stack of grid_stack for simulating an image of a strong lens, whereby the grid's use padded-grid_stack \
        to ensure that the PSF blurring in the simulation routine (*ccd.PrepatoryImage.simulate*) is not degraded \
        due to edge effects.

        Parameters
        -----------
        shape : (int, int)
            The 2D shape of the array, where all pixels are used to generate the grid-stack's grid_stack.
        pixel_scale : float
            The size of each pixel in arc seconds.            
        psf_shape : (int, int)
            The shape of the PSF used in the analysis, which defines how much the grid's must be masked to mitigate \
            edge effects.
        sub_grid_size : int
            The size of a sub-pixel's sub-grid (sub_grid_size x sub_grid_size).
        """
        return cls.padded_grid_stack_from_mask_sub_grid_size_and_psf_shape(
            mask=msk.Mask(array=np.full(shape, False),
                          pixel_scale=pixel_scale),
            sub_grid_size=sub_grid_size,
            psf_shape=psf_shape)
Пример #8
0
    def test__setup_pixelization__galaxy_has_pixelization__returns_grids_with_pix_grid(
            self):

        ma = mask.Mask(np.array([[False, False, False], [False, False, False],
                                 [False, True, False]]),
                       pixel_scale=1.0)

        grid_stack = grids.GridStack.grid_stack_from_mask_sub_grid_size_and_psf_shape(
            mask=ma, sub_grid_size=1, psf_shape=(1, 1))

        galaxy = g.Galaxy(
            pixelization=pixelizations.AdaptiveMagnification(shape=(3, 3)),
            regularization=regularization.Constant())

        image_plane_pix_grids = \
            pixelizations.setup_image_plane_pixelization_grid_from_galaxies_and_grid_stack(galaxies=[galaxy, galaxy],
                                                                                           grid_stack=grid_stack)

        assert (image_plane_pix_grids.regular == grid_stack.regular).all()
        assert (image_plane_pix_grids.sub == grid_stack.sub).all()
        assert (image_plane_pix_grids.blurring == grid_stack.blurring).all()
        assert image_plane_pix_grids.pix == pytest.approx(
            np.array([[1.0, -1.0], [1.0, 0.0], [1.0, 1.0], [0.0, -1.0],
                      [0.0, 0.0], [0.0, 1.0], [-1.0, -1.0], [-1.0, 1.0]]),
            1.0e-4)
Пример #9
0
    def test__same_as_above__but_remove_some_centre_pixels_and_change_order__order_does_not_change_mapping(
            self):

        ma = mask.Mask(array=np.array([[False, False, False],
                                       [False, False, False],
                                       [False, False, False]]),
                       pixel_scale=1.0)

        unmasked_sparse_grid_pixel_centres = np.array([[0, 0], [0, 1], [2, 2],
                                                       [1, 1], [0, 2], [2, 0],
                                                       [0, 2]])

        total_masked_pixels = mask_util.total_sparse_pixels_from_mask(
            mask=ma,
            unmasked_sparse_grid_pixel_centres=
            unmasked_sparse_grid_pixel_centres)

        sparse_to_unmasked_sparse = mapping_util.sparse_to_unmasked_sparse_from_mask_and_pixel_centres(
            total_sparse_pixels=total_masked_pixels,
            mask=ma,
            unmasked_sparse_grid_pixel_centres=
            unmasked_sparse_grid_pixel_centres)

        assert (sparse_to_unmasked_sparse == np.array([0, 1, 2, 3, 4, 5,
                                                       6])).all()
Пример #10
0
        def test__1x2_image__tracing_fits_data_with_chi_sq_5_and_chi_sq_4(
                self):

            psf_0 = ccd.PSF(array=(np.array([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0],
                                             [0.0, 0.0, 0.0]])),
                            pixel_scale=1.0)
            ccd_0 = ccd.CCDData(5.0 * np.ones((3, 4)),
                                pixel_scale=1.0,
                                psf=psf_0,
                                noise_map=np.ones((3, 4)))
            ccd_0.image[1, 2] = 4.0
            mask_0 = msk.Mask(array=np.array([[True, True, True, True],
                                              [True, False, False, True],
                                              [True, True, True, True]]),
                              pixel_scale=1.0)

            psf_1 = ccd.PSF(array=(np.array([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0],
                                             [0.0, 0.0, 0.0]])),
                            pixel_scale=1.0)
            ccd_1 = ccd.CCDData(5.0 * np.ones((3, 4)),
                                pixel_scale=1.0,
                                psf=psf_1,
                                noise_map=np.ones((3, 4)))
            mask_1 = msk.Mask(array=np.array([[True, True, True, True],
                                              [True, False, False, True],
                                              [True, True, True, True]]),
                              pixel_scale=1.0)

            li_stack = lds.LensDataStack(ccd_datas=[ccd_0, ccd_1],
                                         masks=[mask_0, mask_1],
                                         sub_grid_size=1)

            # Setup as a ray trace instance, using a light profile for the lens

            g0 = g.Galaxy(light_profile=MockLightProfile(value=1.0, size=2))
            tracer = ray_tracing_stack.TracerImagePlaneStack(
                lens_galaxies=[g0],
                image_plane_grid_stacks=li_stack.grid_stacks)

            fit = lens_fit_stack.LensProfileFitStack(lens_data_stack=li_stack,
                                                     tracer=tracer)

            assert fit.chi_squared == 25.0 + 32.0
            assert fit.reduced_chi_squared == (25.0 + 32.0) / 2.0
            assert fit.likelihood == -0.5 * (
                (25.0 + 2.0 * np.log(2 * np.pi * 1.0)) +
                (32.0 + 2.0 * np.log(2 * np.pi * 1.0)))
Пример #11
0
    def test__3x3_simple_grid__include_mask__create_using_regular_grid(self):

        regular_grid = np.array([[1.0, 0.0], [0.0, -1.0], [0.0, 0.0],
                                 [0.0, 1.0], [-1.0, 0.0]])

        mask = msk.Mask(array=np.array([[True, False, True],
                                        [False, False, False],
                                        [True, False, True]]),
                        pixel_scale=1.0)

        sub_grid = np.array([[1.0, 0.0], [0.0, -1.0], [0.0, 0.0], [0.0, 1.0],
                             [-1.0, 0.0]])
        sub_to_regular = np.array([0, 1, 2, 3, 4])

        regular_grid = grids.RegularGrid(arr=regular_grid, mask=mask)
        sub_grid = MockSubGrid(sub_grid, sub_to_regular, sub_grid_size=1)

        pix = pixelizations.AdaptiveMagnification(shape=(3, 3))
        image_plane_pix = pix.image_plane_pix_grid_from_regular_grid(
            regular_grid=regular_grid)

        grid_stack = MockGridStack(
            regular=regular_grid,
            sub=sub_grid,
            pix=image_plane_pix.sparse_grid,
            regular_to_nearest_pix=image_plane_pix.regular_to_sparse)

        mapper = pix.mapper_from_grid_stack_and_border(grid_stack=grid_stack,
                                                       border=None)

        assert mapper.is_image_plane_pixelization == True
        assert mapper.geometry.shape_arc_seconds == pytest.approx((2.0, 2.0),
                                                                  1.0e-4)
        assert (mapper.geometry.pixel_centres == image_plane_pix.sparse_grid
                ).all()
        assert mapper.geometry.origin == pytest.approx((0.0, 0.0), 1.0e-4)

        assert isinstance(mapper, pm.VoronoiMapper)

        assert (mapper.mapping_matrix == np.array([[1.0, 0.0, 0.0, 0.0, 0.0],
                                                   [0.0, 1.0, 0.0, 0.0, 0.0],
                                                   [0.0, 0.0, 1.0, 0.0, 0.0],
                                                   [0.0, 0.0, 0.0, 1.0, 0.0],
                                                   [0.0, 0.0, 0.0, 0.0,
                                                    1.0]])).all()

        reg = regularization.Constant(coefficients=(1.0, ))
        regularization_matrix = reg.regularization_matrix_from_pixel_neighbors(
            mapper.geometry.pixel_neighbors,
            mapper.geometry.pixel_neighbors_size)

        assert (regularization_matrix == np.array(
            [[3.00000001, -1.0, -1.0, -1.0, 0.0],
             [-1.0, 3.00000001, -1.0, 0.0, -1.0],
             [-1.0, -1.0, 4.00000001, -1.0, -1.0],
             [-1.0, 0.0, -1.0, 3.00000001, -1.0],
             [0.0, -1.0, -1.0, -1.0, 3.00000001]])).all()
Пример #12
0
    def test___same_as_above__use_galaxies_to_make_plane_images(self):

        mask = msk.Mask(array=np.array([[True, True,
                                         True], [True, False, True],
                                        [True, True, True]]),
                        pixel_scale=1.0)

        padded_grid_stack = grids.GridStack.padded_grid_stack_from_mask_sub_grid_size_and_psf_shape(
            mask=mask, sub_grid_size=1, psf_shape=(3, 3))

        psf_0 = im.PSF(array=(np.array([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0],
                                        [0.0, 0.0, 0.0]])),
                       pixel_scale=1.0)

        psf_1 = im.PSF(array=(np.array([[0.0, 3.0, 0.0], [0.0, 1.0, 2.0],
                                        [0.0, 0.0, 0.0]])),
                       pixel_scale=1.0)

        g0 = g.Galaxy(light_profile=lp.EllipticalSersic(intensity=0.1))
        g1 = g.Galaxy(light_profile=lp.EllipticalSersic(intensity=0.2))

        tracer = ray_tracing_stack.TracerImagePlaneStack(
            lens_galaxies=[g0, g1],
            image_plane_grid_stacks=[padded_grid_stack, padded_grid_stack])

        manual_blurred_image_00 = tracer.image_plane.image_plane_images_1d_of_galaxies[
            0][0]
        manual_blurred_image_00 = padded_grid_stack.regular.map_to_2d_keep_padded(
            padded_array_1d=manual_blurred_image_00)
        manual_blurred_image_00 = psf_0.convolve(array=manual_blurred_image_00)

        manual_blurred_image_01 = tracer.image_plane.image_plane_images_1d_of_galaxies[
            0][1]
        manual_blurred_image_01 = padded_grid_stack.regular.map_to_2d_keep_padded(
            padded_array_1d=manual_blurred_image_01)
        manual_blurred_image_01 = psf_0.convolve(array=manual_blurred_image_01)

        manual_blurred_image_10 = tracer.image_plane.image_plane_images_1d_of_galaxies[
            1][0]
        manual_blurred_image_10 = padded_grid_stack.regular.map_to_2d_keep_padded(
            padded_array_1d=manual_blurred_image_10)
        manual_blurred_image_10 = psf_1.convolve(array=manual_blurred_image_10)

        manual_blurred_image_11 = tracer.image_plane.image_plane_images_1d_of_galaxies[
            1][1]
        manual_blurred_image_11 = padded_grid_stack.regular.map_to_2d_keep_padded(
            padded_array_1d=manual_blurred_image_11)
        manual_blurred_image_11 = psf_1.convolve(array=manual_blurred_image_11)

        unmasked_blurred_image_of_datas_and_planes = \
            stack_util.unmasked_blurred_image_of_datas_and_planes_from_padded_grid_stacks_and_psf(
                planes=tracer.planes, padded_grid_stacks=[padded_grid_stack, padded_grid_stack], psfs=[psf_0, psf_1])

        assert unmasked_blurred_image_of_datas_and_planes[0][0] == \
                pytest.approx(manual_blurred_image_00[1:4, 1:4] + manual_blurred_image_01[1:4, 1:4], 1.0e-4)
        assert unmasked_blurred_image_of_datas_and_planes[1][0] == \
                pytest.approx(manual_blurred_image_10[1:4, 1:4] + manual_blurred_image_11[1:4, 1:4], 1.0e-4)
Пример #13
0
    def test__grid_to_pixel__compare_to_array_utill(self):
        mask = np.array([[True, True, True], [True, False, False],
                         [True, True, False]])

        mask = msk.Mask(mask, pixel_scale=7.0)

        grid_to_pixel_util = util.masked_grid_1d_index_to_2d_pixel_index_from_mask(
            mask)

        assert mask.masked_grid_index_to_pixel == pytest.approx(
            grid_to_pixel_util, 1e-4)
Пример #14
0
    def test__mask_extract_region__uses_the_limits_of_the_mask(self):

        mask = msk.Mask(array=np.array([[True, True, True, True],
                                        [True, False, False, True],
                                        [True, False, False, True],
                                        [True, True, True, True]]),
                        pixel_scale=1.0)

        assert mask.extraction_region == [1, 3, 1, 3]

        mask = msk.Mask(array=np.array([[True, True, True, True],
                                        [True, False, False, True],
                                        [True, False, False, False],
                                        [True, True, True, True]]),
                        pixel_scale=1.0)

        assert mask.extraction_region == [1, 3, 1, 4]

        mask = msk.Mask(array=np.array([[True, True, True, True],
                                        [True, False, False, True],
                                        [True, False, False, True],
                                        [True, True, False, True]]),
                        pixel_scale=1.0)

        assert mask.extraction_region == [1, 4, 1, 3]

        mask = msk.Mask(array=np.array([[True, True, True, True],
                                        [True, False, False, True],
                                        [False, False, False, True],
                                        [True, True, True, True]]),
                        pixel_scale=1.0)

        assert mask.extraction_region == [1, 3, 0, 3]

        mask = msk.Mask(array=np.array([[True, False, True, True],
                                        [True, False, False, True],
                                        [True, False, False, True],
                                        [True, True, True, True]]),
                        pixel_scale=1.0)

        assert mask.extraction_region == [0, 3, 1, 3]
Пример #15
0
    def test__array_finalize__masks_pass_attributes(self):

        mask = np.array([[True, True, True, True], [True, False, False, True],
                         [True, True, True, True]])

        mask = msk.Mask(mask, pixel_scale=1)

        mask_new = mask + mask

        assert mask_new.pixel_scale == 1.0
        assert mask_new.origin == (0.0, 0.0)
        assert mask_new.centre == (0.0, 0.0)
Пример #16
0
def make_li_manual_stack():

    image_0 = np.array([[0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 2.0, 3.0, 0.0],
                        [0.0, 4.0, 5.0, 6.0, 0.0], [0.0, 7.0, 8.0, 9.0, 0.0],
                        [0.0, 0.0, 0.0, 0.0, 0.0]])
    psf_0 = ccd.PSF(array=(np.array([[1.0, 5.0, 9.0], [2.0, 5.0, 1.0],
                                     [3.0, 4.0, 0.0]])),
                    pixel_scale=1.0)
    ccd_0 = ccd.CCDData(image_0,
                        pixel_scale=1.0,
                        psf=psf_0,
                        noise_map=np.ones((5, 5)))
    mask_0 = msk.Mask(array=np.array([[True, True, True, True, True],
                                      [True, False, False, False, True],
                                      [True, False, False, False, True],
                                      [True, False, False, False, True],
                                      [True, True, True, True, True]]),
                      pixel_scale=1.0)

    image_1 = np.array([[0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 2.0, 3.0, 0.0],
                        [0.0, 4.0, 6.0, 6.0, 0.0], [0.0, 7.0, 8.0, 9.0, 0.0],
                        [0.0, 0.0, 0.0, 0.0, 0.0]])
    psf_1 = ccd.PSF(array=(np.array([[1.0, 1.0, 1.0], [2.0, 1.0, 1.0],
                                     [3.0, 1.0, 0.0]])),
                    pixel_scale=1.0)
    ccd_1 = ccd.CCDData(image_1,
                        pixel_scale=1.0,
                        psf=psf_1,
                        noise_map=np.ones((5, 5)))
    mask_1 = msk.Mask(array=np.array([[True, True, True, True, True],
                                      [True, False, False, False, True],
                                      [True, False, False, False, True],
                                      [True, False, False, True, True],
                                      [True, True, True, True, True]]),
                      pixel_scale=1.0)

    return lds.LensDataStack(ccd_datas=[ccd_0, ccd_1],
                             masks=[mask_0, mask_1],
                             sub_grid_size=1)
Пример #17
0
        def test__image__tracing_fits_data_perfectly__no_psf_blurring__lh_is_noise_normalization(
                self):

            psf_0 = ccd.PSF(array=(np.array([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0],
                                             [0.0, 0.0, 0.0]])),
                            pixel_scale=1.0)
            ccd_0 = ccd.CCDData(np.ones((3, 3)),
                                pixel_scale=1.0,
                                psf=psf_0,
                                noise_map=np.ones((3, 3)))
            mask_0 = msk.Mask(array=np.array([[True, True, True],
                                              [True, False, True],
                                              [True, True, True]]),
                              pixel_scale=1.0)

            psf_1 = ccd.PSF(array=(np.array([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0],
                                             [0.0, 0.0, 0.0]])),
                            pixel_scale=1.0)
            ccd_1 = ccd.CCDData(np.ones((3, 3)),
                                pixel_scale=1.0,
                                psf=psf_1,
                                noise_map=np.ones((3, 3)))
            mask_1 = msk.Mask(array=np.array([[True, True, True],
                                              [True, False, True],
                                              [True, True, True]]),
                              pixel_scale=1.0)

            li_stack = lds.LensDataStack(ccd_datas=[ccd_0, ccd_1],
                                         masks=[mask_0, mask_1],
                                         sub_grid_size=1)

            g0 = g.Galaxy(light_profile=MockLightProfile(value=1.0))
            tracer = ray_tracing_stack.TracerImagePlaneStack(
                lens_galaxies=[g0],
                image_plane_grid_stacks=li_stack.grid_stacks)

            fit = lens_fit_stack.LensProfileFitStack(lens_data_stack=li_stack,
                                                     tracer=tracer)
            assert fit.likelihood == 2.0 * -0.5 * np.log(2 * np.pi * 1.0)
Пример #18
0
    def test__edge_image_pixels__compare_to_array_util(self):
        mask = np.array([[True, True, True, True, True, True, True],
                         [True, True, True, True, True, True, True],
                         [True, True, True, True, True, True, True],
                         [True, True, True, False, True, True, True],
                         [True, True, True, True, True, True, True],
                         [True, True, True, True, True, True, True],
                         [True, True, True, True, True, True, True]])

        edge_pixels_util = util.edge_pixels_from_mask(mask)

        mask = msk.Mask(mask, pixel_scale=3.0)

        assert mask.edge_pixels == pytest.approx(edge_pixels_util, 1e-4)
Пример #19
0
    def test__map_2d_array_to_masked_1d_array__compare_to_array_util(self):
        array_2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])

        mask = np.array([[True, False, True], [False, False, False],
                         [True, False, True], [True, True, True]])

        array_1d_util = mapping_util.map_2d_array_to_masked_1d_array_from_array_2d_and_mask(
            mask, array_2d)

        mask = msk.Mask(mask, pixel_scale=3.0)

        array_1d = mask.map_2d_array_to_masked_1d_array(array_2d)

        assert (array_1d == array_1d_util).all()
Пример #20
0
    def test__constructor(self):

        mask = np.array([[True, True, True, True], [True, False, False, True],
                         [True, True, True, True]])

        mask = msk.Mask(mask, pixel_scale=1)

        assert (mask == np.array([[True, True, True, True],
                                  [True, False, False, True],
                                  [True, True, True, True]])).all()
        assert mask.pixel_scale == 1.0
        assert mask.central_pixel_coordinates == (1.0, 1.5)
        assert mask.shape == (3, 4)
        assert mask.shape_arc_seconds == (3.0, 4.0)
Пример #21
0
    def test__setup_pixelization__galaxies_have_no_pixelization__returns_normal_grids(
            self):

        ma = mask.Mask(np.array([[False, False, False], [False, False, False],
                                 [False, False, False]]),
                       pixel_scale=1.0)

        grid_stack = grids.GridStack.grid_stack_from_mask_sub_grid_size_and_psf_shape(
            mask=ma, sub_grid_size=1, psf_shape=(1, 1))

        galaxy = g.Galaxy()

        image_plane_pix_grids = \
            pixelizations.setup_image_plane_pixelization_grid_from_galaxies_and_grid_stack(galaxies=[galaxy, galaxy],
                                                                                           grid_stack=grid_stack)

        assert image_plane_pix_grids == grid_stack
Пример #22
0
        def test__ensure_index_of_plane_image_has_negative_arcseconds_at_start(
                self, grid_stack_0):
            # The grid coordinates -2.0 -> 2.0 mean a plane of shape (5,5) has arc second coordinates running over
            # -1.6, -0.8, 0.0, 0.8, 1.6. The origin -1.6, -1.6 of the model_galaxy means its brighest pixel should be
            # index 0 of the 1D grid and (0,0) of the 2d plane datas_.

            msk = mask.Mask(array=np.full((5, 5), False), pixel_scale=1.0)

            grid_stack_0.regular = grids.RegularGrid(np.array([[-2.0, -2.0],
                                                               [2.0, 2.0]]),
                                                     mask=msk)

            g0 = g.Galaxy(light_profile=lp.EllipticalSersic(centre=(1.6, -1.6),
                                                            intensity=1.0))
            plane_stack = pl_stack.PlaneStack(galaxies=[g0],
                                              grid_stacks=[grid_stack_0])

            assert plane_stack.plane_images[0].shape == (5, 5)
            assert np.unravel_index(plane_stack.plane_images[0].argmax(),
                                    plane_stack.plane_images[0].shape) == (0,
                                                                           0)

            g0 = g.Galaxy(light_profile=lp.EllipticalSersic(centre=(1.6, 1.6),
                                                            intensity=1.0))
            plane_stack = pl_stack.PlaneStack(galaxies=[g0],
                                              grid_stacks=[grid_stack_0])
            assert np.unravel_index(plane_stack.plane_images[0].argmax(),
                                    plane_stack.plane_images[0].shape) == (0,
                                                                           4)

            g0 = g.Galaxy(light_profile=lp.EllipticalSersic(
                centre=(-1.6, -1.6), intensity=1.0))
            plane_stack = pl_stack.PlaneStack(galaxies=[g0],
                                              grid_stacks=[grid_stack_0])
            assert np.unravel_index(plane_stack.plane_images[0].argmax(),
                                    plane_stack.plane_images[0].shape) == (4,
                                                                           0)

            g0 = g.Galaxy(light_profile=lp.EllipticalSersic(centre=(-1.6, 1.6),
                                                            intensity=1.0))
            plane_stack = pl_stack.PlaneStack(galaxies=[g0],
                                              grid_stacks=[grid_stack_0])
            assert np.unravel_index(plane_stack.plane_images[0].argmax(),
                                    plane_stack.plane_images[0].shape) == (4,
                                                                           4)
Пример #23
0
    def test__same_as_above__different_mask_and_centres(self):

        ma = mask.Mask(array=np.array([[False, False, True],
                                       [False, False, False],
                                       [True, False, False]]),
                       pixel_scale=1.0)

        unmasked_sparse_grid_pixel_centres = np.array([[0, 0], [0, 1], [0, 2],
                                                       [0, 2], [0, 2], [1, 1]])

        unmasked_sparse_to_sparse = mapping_util.unmasked_sparse_to_sparse_from_mask_and_pixel_centres(
            mask=ma,
            unmasked_sparse_grid_pixel_centres=
            unmasked_sparse_grid_pixel_centres,
            total_sparse_pixels=4)

        assert (unmasked_sparse_to_sparse == np.array([0, 1, 2, 2, 2,
                                                       2])).all()
Пример #24
0
    def test__blurring_mask_for_psf_shape__compare_to_array_util(self):

        mask = np.array([[True, True, True, True, True, True, True, True],
                         [True, False, True, True, True, False, True, True],
                         [True, True, True, True, True, True, True, True],
                         [True, True, True, True, True, True, True, True],
                         [True, True, True, True, True, True, True, True],
                         [True, False, True, True, True, False, True, True],
                         [True, True, True, True, True, True, True, True],
                         [True, True, True, True, True, True, True, True],
                         [True, True, True, True, True, True, True, True]])

        blurring_mask_util = util.mask_blurring_from_mask_and_psf_shape(
            mask=mask, psf_shape=(3, 3))

        mask = msk.Mask(mask, pixel_scale=1.0)
        blurring_mask = mask.blurring_mask_for_psf_shape(psf_shape=(3, 3))

        assert (blurring_mask == blurring_mask_util).all()
Пример #25
0
    def test__mask_is_cross__some_pix_pixels_are_masked__omitted_from_mapping(
            self):

        ma = mask.Mask(array=np.array([[True, False, True],
                                       [False, False, False],
                                       [True, False, True]]),
                       pixel_scale=1.0)

        unmasked_sparse_grid_pixel_centres = np.array \
            ([[0 ,0], [0 ,1], [0 ,2], [1 ,0], [1 ,1], [1 ,2], [2 ,0], [2 ,1], [2 ,2]])

        unmasked_sparse_to_sparse = mapping_util.unmasked_sparse_to_sparse_from_mask_and_pixel_centres(
            mask=ma,
            unmasked_sparse_grid_pixel_centres=
            unmasked_sparse_grid_pixel_centres,
            total_sparse_pixels=5)

        assert (unmasked_sparse_to_sparse == np.array(
            [0, 0, 1, 1, 2, 3, 4, 4, 4])).all()
Пример #26
0
    def test__setup_pixelization__galaxy_has_pixelization__but_grid_is_padded_grid__returns_normal_grids(
            self):

        ma = mask.Mask(np.array([[False, False, False], [False, False, False],
                                 [False, True, False]]),
                       pixel_scale=1.0)

        grid_stack = grids.GridStack.padded_grid_stack_from_mask_sub_grid_size_and_psf_shape(
            mask=ma, sub_grid_size=1, psf_shape=(1, 1))

        galaxy = g.Galaxy(
            pixelization=pixelizations.AdaptiveMagnification(shape=(3, 3)),
            regularization=regularization.Constant())

        image_plane_pix_grids = \
            pixelizations.setup_image_plane_pixelization_grid_from_galaxies_and_grid_stack(galaxies=[galaxy, galaxy],
                                                                                           grid_stack=grid_stack)

        assert image_plane_pix_grids == grid_stack
Пример #27
0
    def test__mask_full_false__image_mask_and_pixel_centres_fully_overlap__each_pix_maps_to_unmaked_pix(
            self):

        ma = mask.Mask(array=np.array([[False, False, False],
                                       [False, False, False],
                                       [False, False, False]]),
                       pixel_scale=1.0)

        unmasked_sparse_grid_pixel_centres = np.array \
            ([[0 ,0], [0 ,1], [0 ,2], [1 ,0], [1 ,1], [1 ,2], [2 ,0], [2 ,1], [2 ,2]])

        unmasked_sparse_to_sparse = mapping_util.unmasked_sparse_to_sparse_from_mask_and_pixel_centres(
            mask=ma,
            unmasked_sparse_grid_pixel_centres=
            unmasked_sparse_grid_pixel_centres,
            total_sparse_pixels=9)

        assert (unmasked_sparse_to_sparse == np.array(
            [0, 1, 2, 3, 4, 5, 6, 7, 8])).all()
Пример #28
0
def make_lens_data_blur():

    psf = ccd.PSF(array=(np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0],
                                   [1.0, 1.0, 1.0]])),
                  pixel_scale=1.0,
                  renormalize=False)
    im = ccd.CCDData(image=5.0 * np.ones((6, 6)),
                     pixel_scale=1.0,
                     psf=psf,
                     noise_map=np.ones((6, 6)),
                     exposure_time_map=3.0 * np.ones((6, 6)),
                     background_sky_map=4.0 * np.ones((6, 6)))

    ma = np.array([[True, True, True, True, True, True],
                   [True, False, False, False, False, True],
                   [True, False, False, False, False, True],
                   [True, False, False, False, False, True],
                   [True, False, False, False, False, True],
                   [True, True, True, True, True, True]])
    ma = mask.Mask(array=ma, pixel_scale=1.0)

    return ld.LensData(ccd_data=im, mask=ma, sub_grid_size=2)
Пример #29
0
    def test__same_as_above__but_3x4_mask(self):

        ma = mask.Mask(array=np.array([[True, True, False, True],
                                       [False, False, False, False],
                                       [True, True, False, True]]),
                       pixel_scale=1.0)

        unmasked_sparse_grid_pixel_centres = np.array([[0, 0], [0, 1], [0, 2],
                                                       [0, 2], [0, 2], [1, 1],
                                                       [2, 3], [2, 2]])

        total_masked_pixels = mask_util.total_sparse_pixels_from_mask(
            mask=ma,
            unmasked_sparse_grid_pixel_centres=
            unmasked_sparse_grid_pixel_centres)

        sparse_to_unmasked_sparse = mapping_util.sparse_to_unmasked_sparse_from_mask_and_pixel_centres(
            total_sparse_pixels=total_masked_pixels,
            mask=ma,
            unmasked_sparse_grid_pixel_centres=
            unmasked_sparse_grid_pixel_centres)

        assert (sparse_to_unmasked_sparse == np.array([2, 3, 4, 5, 7])).all()
Пример #30
0
    def test__pixelization_regular_grid_from_regular_grid__offset_mask__origin_shift_corrects(
            self):

        ma = mask.Mask(array=np.array([[True, True, False, False, False],
                                       [True, True, False, False, False],
                                       [True, True, False, False, False],
                                       [True, True, True, True, True],
                                       [True, True, True, True, True]]),
                       pixel_scale=1.0,
                       centre=(1.0, 1.0))

        regular_grid = grids.RegularGrid.from_mask(mask=ma)

        adaptive_image_grid = pixelizations.ImagePlanePixelization(shape=(3,
                                                                          3))

        pix_grid = adaptive_image_grid.image_plane_pix_grid_from_regular_grid(
            regular_grid=regular_grid)

        assert pix_grid.shape == (3, 3)
        assert pix_grid.pixel_scales == (1.0, 1.0)
        assert pix_grid.total_sparse_pixels == 9
        assert (pix_grid.sparse_to_unmasked_sparse == np.array(
            [0, 1, 2, 3, 4, 5, 6, 7, 8])).all()
        assert (pix_grid.unmasked_sparse_to_sparse == np.array(
            [0, 1, 2, 3, 4, 5, 6, 7, 8])).all()
        assert (pix_grid.regular_to_unmasked_sparse == np.array(
            [0, 1, 2, 3, 4, 5, 6, 7, 8])).all()
        assert (pix_grid.regular_to_sparse == np.array(
            [0, 1, 2, 3, 4, 5, 6, 7, 8])).all()
        assert (pix_grid.sparse_grid == np.array([[2.0, 0.0], [2.0, 1.0],
                                                  [2.0, 2.0], [1.0, 0.0],
                                                  [1.0, 1.0], [1.0, 2.0],
                                                  [0.0, 0.0], [0.0, 1.0],
                                                  [0.0, 2.0]])).all()
        assert pix_grid.regular_grid == pytest.approx(regular_grid, 1e-4)