def test__figure_of_merit__includes_hyper_image_and_noise__matches_fit(
            self, interferometer_7):
        hyper_background_noise = al.hyper_data.HyperBackgroundNoise(
            noise_scale=1.0)

        lens_galaxy = al.Galaxy(redshift=0.5,
                                light=al.lp.EllSersic(intensity=0.1))

        model = af.Collection(
            galaxies=af.Collection(lens=lens_galaxy),
            hyper_background_noise=hyper_background_noise,
        )

        analysis = al.AnalysisInterferometer(dataset=interferometer_7)

        instance = model.instance_from_unit_vector([])
        analysis_log_likelihood = analysis.log_likelihood_function(
            instance=instance)

        tracer = analysis.tracer_for_instance(instance=instance)

        fit = al.FitInterferometer(
            interferometer=interferometer_7,
            tracer=tracer,
            hyper_background_noise=hyper_background_noise,
        )

        assert fit.log_likelihood == analysis_log_likelihood
Пример #2
0
    def test__fit_interferometer_all_above_weight_gen(self, interferometer_7,
                                                      samples, model):

        path_prefix = "aggregator_fit_interferometer_gen"

        database_file = path.join(conf.instance.output_path,
                                  "fit_interferometer.sqlite")
        result_path = path.join(conf.instance.output_path, path_prefix)

        clean(database_file=database_file, result_path=result_path)

        search = mock.MockSearch(samples=samples,
                                 result=mock.MockResult(model=model,
                                                        samples=samples))
        search.paths = af.DirectoryPaths(path_prefix=path_prefix)
        analysis = al.AnalysisInterferometer(dataset=interferometer_7)
        search.fit(model=model, analysis=analysis)

        agg = af.Aggregator.from_database(filename=database_file)
        agg.add_directory(directory=result_path)

        fit_interferometer_agg = al.agg.FitInterferometerAgg(aggregator=agg)
        fit_interferometer_pdf_gen = fit_interferometer_agg.all_above_weight_gen(
            minimum_weight=-1.0)

        i = 0

        for fit_interferometer_gen in fit_interferometer_pdf_gen:

            for fit_interferometer in fit_interferometer_gen:

                i += 1

                if i == 1:
                    assert fit_interferometer.tracer.galaxies[
                        0].redshift == 0.5
                    assert fit_interferometer.tracer.galaxies[
                        0].light.centre == (
                            1.0,
                            1.0,
                        )
                    assert fit_interferometer.tracer.galaxies[
                        1].redshift == 1.0

                if i == 2:
                    assert fit_interferometer.tracer.galaxies[
                        0].redshift == 0.5
                    assert fit_interferometer.tracer.galaxies[
                        0].light.centre == (
                            10.0,
                            10.0,
                        )
                    assert fit_interferometer.tracer.galaxies[
                        1].redshift == 1.0

        assert i == 2

        clean(database_file=database_file, result_path=result_path)
    def test__stochastic_log_likelihoods_for_instance(self, interferometer_7):

        lens_hyper_image = al.Array2D.ones(shape_native=(3, 3),
                                           pixel_scales=0.1)
        lens_hyper_image[4] = 10.0
        source_hyper_image = al.Array2D.ones(shape_native=(3, 3),
                                             pixel_scales=0.1)
        source_hyper_image[4] = 10.0
        hyper_model_image = al.Array2D.full(fill_value=0.5,
                                            shape_native=(3, 3),
                                            pixel_scales=0.1)

        hyper_galaxy_image_path_dict = {
            ("galaxies", "lens"): lens_hyper_image,
            ("galaxies", "source"): source_hyper_image,
        }

        result = mock.MockResult(
            hyper_galaxy_image_path_dict=hyper_galaxy_image_path_dict,
            hyper_model_image=hyper_model_image,
        )

        analysis = al.AnalysisInterferometer(
            dataset=interferometer_7,
            settings_lens=al.SettingsLens(stochastic_samples=2),
            hyper_dataset_result=result,
        )

        galaxies = af.ModelInstance()
        galaxies.source = al.Galaxy(
            redshift=1.0,
            pixelization=al.pix.VoronoiBrightnessImage(pixels=5),
            regularization=al.reg.Constant(),
        )

        instance = af.ModelInstance()
        instance.galaxies = galaxies

        log_evidences = analysis.stochastic_log_likelihoods_for_instance(
            instance=instance)

        assert len(log_evidences) == 2
        assert log_evidences[0] != log_evidences[1]

        galaxies.source = al.Galaxy(
            redshift=1.0,
            pixelization=al.pix.DelaunayBrightnessImage(pixels=5),
            regularization=al.reg.Constant(),
        )

        instance = af.ModelInstance()
        instance.galaxies = galaxies

        log_evidences = analysis.stochastic_log_likelihoods_for_instance(
            instance=instance)

        assert len(log_evidences) == 2
        assert log_evidences[0] != log_evidences[1]
Пример #4
0
def test__positions__likelihood_overwrite__changes_likelihood(
        interferometer_7, mask_2d_7x7):

    lens = al.Galaxy(redshift=0.5, mass=al.mp.SphIsothermal())
    source = al.Galaxy(redshift=1.0, light=al.lp.SphSersic())

    model = af.Collection(galaxies=af.Collection(lens=lens, source=source))

    analysis = al.AnalysisInterferometer(dataset=interferometer_7)

    instance = model.instance_from_unit_vector([])
    analysis_log_likelihood = analysis.log_likelihood_function(
        instance=instance)

    tracer = analysis.tracer_via_instance_from(instance=instance)

    fit = al.FitInterferometer(dataset=interferometer_7, tracer=tracer)

    assert fit.log_likelihood == analysis_log_likelihood
    assert analysis_log_likelihood == pytest.approx(-127914.36273, 1.0e-4)

    positions_likelihood = al.PositionsLHPenalty(positions=al.Grid2DIrregular([
        (1.0, 100.0), (200.0, 2.0)
    ]),
                                                 threshold=0.01)

    analysis = al.AnalysisInterferometer(
        dataset=interferometer_7, positions_likelihood=positions_likelihood)
    analysis_log_likelihood = analysis.log_likelihood_function(
        instance=instance)

    log_likelihood_penalty_base = positions_likelihood.log_likelihood_penalty_base_from(
        dataset=interferometer_7)
    log_likelihood_penalty = positions_likelihood.log_likelihood_penalty_from(
        tracer=tracer)

    assert analysis_log_likelihood == pytest.approx(
        log_likelihood_penalty_base - log_likelihood_penalty, 1.0e-4)
    assert analysis_log_likelihood == pytest.approx(-22048700567.590656,
                                                    1.0e-4)
    def test__sets_up_hyper_galaxy_visibiltiies__from_results(
            self, interferometer_7):

        hyper_galaxy_image_path_dict = {
            ("galaxies", "lens"):
            al.Array2D.ones(shape_native=(3, 3), pixel_scales=1.0),
            ("galaxies", "source"):
            al.Array2D.full(fill_value=2.0,
                            shape_native=(3, 3),
                            pixel_scales=1.0),
        }

        hyper_galaxy_visibilities_path_dict = {
            ("galaxies", "lens"):
            al.Visibilities.full(fill_value=4.0, shape_slim=(7, )),
            ("galaxies", "source"):
            al.Visibilities.full(fill_value=5.0, shape_slim=(7, )),
        }

        result = mock.MockResult(
            hyper_galaxy_image_path_dict=hyper_galaxy_image_path_dict,
            hyper_model_image=al.Array2D.full(fill_value=3.0,
                                              shape_native=(3, 3),
                                              pixel_scales=1.0),
            hyper_galaxy_visibilities_path_dict=
            hyper_galaxy_visibilities_path_dict,
            hyper_model_visibilities=al.Visibilities.full(fill_value=6.0,
                                                          shape_slim=(7, )),
        )

        analysis = al.AnalysisInterferometer(dataset=interferometer_7,
                                             hyper_result=result)

        analysis.set_hyper_dataset(result=result)

        assert (analysis.hyper_galaxy_image_path_dict[(
            "galaxies", "lens")].native == np.ones((3, 3))).all()

        assert (analysis.hyper_galaxy_image_path_dict[(
            "galaxies", "source")].native == 2.0 * np.ones((3, 3))).all()

        assert (analysis.hyper_model_image.native == 3.0 * np.ones(
            (3, 3))).all()

        assert (analysis.hyper_galaxy_visibilities_path_dict[(
            "galaxies", "lens")] == (4.0 + 4.0j) * np.ones((7, ))).all()

        assert (analysis.hyper_galaxy_visibilities_path_dict[(
            "galaxies", "source")] == (5.0 + 5.0j) * np.ones((7, ))).all()

        assert (analysis.hyper_model_visibilities == (6.0 + 6.0j) * np.ones(
            (7, ))).all()
    def test__make_result__result_interferometer_is_returned(
            self, interferometer_7):

        model = af.Collection(galaxies=af.Collection(galaxy_0=al.Galaxy(
            redshift=0.5)))

        search = mock.MockSearch(name="test_search")

        analysis = al.AnalysisInterferometer(dataset=interferometer_7)

        result = search.fit(model=model, analysis=analysis)

        assert isinstance(result, res.ResultInterferometer)
Пример #7
0
def test__figure_of_merit__matches_correct_fit_given_galaxy_profiles(
        interferometer_7):
    lens_galaxy = al.Galaxy(redshift=0.5, light=al.lp.EllSersic(intensity=0.1))

    model = af.Collection(galaxies=af.Collection(lens=lens_galaxy))

    analysis = al.AnalysisInterferometer(dataset=interferometer_7)

    instance = model.instance_from_unit_vector([])
    analysis_log_likelihood = analysis.log_likelihood_function(
        instance=instance)

    tracer = analysis.tracer_via_instance_from(instance=instance)

    fit = al.FitInterferometer(dataset=interferometer_7, tracer=tracer)

    assert fit.log_likelihood == analysis_log_likelihood
    def test__positions_do_not_trace_within_threshold__raises_exception(
            self, interferometer_7, mask_2d_7x7):

        model = af.Collection(galaxies=af.Collection(
            lens=al.Galaxy(redshift=0.5, mass=al.mp.SphIsothermal()),
            source=al.Galaxy(redshift=1.0),
        ))

        analysis = al.AnalysisInterferometer(
            dataset=interferometer_7,
            positions=al.Grid2DIrregular([(1.0, 100.0), (200.0, 2.0)]),
            settings_lens=al.SettingsLens(positions_threshold=0.01),
        )

        instance = model.instance_from_unit_vector([])

        with pytest.raises(exc.RayTracingException):
            analysis.log_likelihood_function(instance=instance)
Пример #9
0
def test__fit_interferometer_randomly_drawn_via_pdf_gen_from(
    interferometer_7, samples, model
):

    path_prefix = "aggregator_fit_interferometer_gen"

    database_file = path.join(conf.instance.output_path, "fit_interferometer.sqlite")
    result_path = path.join(conf.instance.output_path, path_prefix)

    clean(database_file=database_file, result_path=result_path)

    result = al.m.MockResult(model=model, samples=samples)

    search = al.m.MockSearch(samples=samples, result=result)
    search.paths = af.DirectoryPaths(path_prefix=path_prefix)
    analysis = al.AnalysisInterferometer(dataset=interferometer_7)
    search.fit(model=model, analysis=analysis)

    agg = af.Aggregator.from_database(filename=database_file)
    agg.add_directory(directory=result_path)

    fit_interferometer_agg = al.agg.FitInterferometerAgg(aggregator=agg)
    fit_interferometer_pdf_gen = fit_interferometer_agg.randomly_drawn_via_pdf_gen_from(
        total_samples=2
    )

    i = 0

    for fit_interferometer_gen in fit_interferometer_pdf_gen:

        for fit_interferometer in fit_interferometer_gen:
            i += 1

            assert fit_interferometer.tracer.galaxies[0].redshift == 0.5
            assert fit_interferometer.tracer.galaxies[0].light.centre == (10.0, 10.0)
            assert fit_interferometer.tracer.galaxies[1].redshift == 1.0

    assert i == 2

    clean(database_file=database_file, result_path=result_path)
Пример #10
0
def test__make_result__result_interferometer_is_returned(interferometer_7):

    model = af.Collection(galaxies=af.Collection(galaxy_0=al.Galaxy(
        redshift=0.5)))

    instance = model.instance_from_prior_medians()

    samples = al.m.MockSamples(max_log_likelihood_instance=instance)

    search = al.m.MockSearch(name="test_search", samples=samples)

    analysis = al.AnalysisInterferometer(dataset=interferometer_7)

    def modify_after_fit(paths: af.DirectoryPaths,
                         model: af.AbstractPriorModel, result: af.Result):
        pass

    analysis.modify_after_fit = modify_after_fit

    result = search.fit(model=model, analysis=analysis)

    assert isinstance(result, ResultInterferometer)
Пример #11
0
"""
__SOURCE PARAMETRIC PIPELINE (no lens light)__

The SOURCE PARAMETRIC PIPELINE (no lens light) uses one search to initialize a robust model for the source galaxy's 
light, which in this example:

 - Uses a parametric `EllSersic` bulge for the source's light (omitting a disk / envelope).
 - Uses an `EllIsothermal` model for the lens's total mass distribution with an `ExternalShear`.
 
__Settings__:
 
 - Mass Centre: Fix the mass profile centre to (0.0, 0.0) (this assumption will be relaxed in the SOURCE INVERSION 
 PIPELINE).
"""
analysis = al.AnalysisInterferometer(dataset=interferometer)

source_parametric_results = slam.source_parametric.no_lens_light(
    settings_autofit=settings_autofit,
    setup_hyper=setup_hyper,
    analysis=analysis,
    mass=af.Model(al.mp.EllIsothermal),
    shear=af.Model(al.mp.ExternalShear),
    source_bulge=af.Model(al.lp.EllSersic),
    mass_centre=(0.0, 0.0),
    redshift_lens=0.5,
    redshift_source=1.0,
)

"""
__SOURCE INVERSION PIPELINE (no lens light)__
)

"""
__SOURCE PARAMETRIC PIPELINE (no lens light)__

The SOURCE PARAMETRIC PIPELINE (no lens light) uses one search to initialize a robust model for the source galaxy's 
light, which in this example:

 - Uses a parametric `EllSersic` bulge for the source's light (omitting a disk / envelope).
 - Uses an `EllIsothermal` model for the lens's total mass distribution with an `ExternalShear`.
 
 __Settings__:
 
 - Mass Centre: Fix the mass profile centre to (0.0, 0.0) (this assumption will be relaxed in the MASS TOTAL PIPELINE).
"""
analysis = al.AnalysisInterferometer(dataset=interferometer)

source_parametric_results = slam.source_parametric.no_lens_light(
    settings_autofit=settings_autofit,
    analysis=analysis,
    setup_hyper=setup_hyper,
    mass=af.Model(al.mp.EllIsothermal),
    shear=af.Model(al.mp.ExternalShear),
    source_bulge=af.Model(al.lp.EllSersic),
    mass_centre=(0.0, 0.0),
    redshift_lens=0.5,
    redshift_source=1.0,
)

"""
__MASS TOTAL PIPELINE (no lens light)__
Пример #13
0
For interferometer model-fits, we include a `SettingsInversion` object which describes how the linear algebra 
calculations required to use an `Inversion` are performed. One of two different approaches can be used: 

 - **Matrices:** Use a numerically more accurate matrix formalism to perform the linear algebra. For datasets 
 of < 100 0000 visibilities this approach is computationally feasible, and if your dataset is this small we we recommend 
 that you use this option (by setting `use_linear_operators=False`. However, larger visibility datasets these matrices 
 require excessive amounts of memory (> 16 GB) to store, making this approach unfeasible. 

 - **Linear Operators (default)**: These are slightly less accurate, but do not require excessive amounts of memory to 
 store the linear algebra calculations. For any dataset with > 1 million visibilities this is the only viable approach 
 to perform lens modeling efficiently.
"""
settings_inversion = al.SettingsInversion(use_linear_operators=True)

analysis = al.AnalysisInterferometer(dataset=interferometer,
                                     settings_inversion=settings_inversion)
"""
__Model-Fit__

We can now begin the model-fit by passing the model and analysis object to the search, which performs a non-linear
search to find which models fit the data with the highest likelihood.

Checkout the output folder for live outputs of the results of the fit, including on-the-fly visualization of the best 
fit model!
"""
result = search.fit(model=model, analysis=analysis)
"""
__Result__

The search returns a result object, which includes: 
Пример #14
0
"""
__Search + Analysis + Model Fit (Search 1)__

We now create the non-linear search, analysis and perform the model-fit using this model.

You may wish to inspect the results of the search 1 model-fit to ensure a fast non-linear search has been provided that 
provides a reasonably accurate lens model.
"""
search = af.DynestyStatic(
    path_prefix=path.join("interferometer", "chaining", "parametric_to_inversion"),
    name="search[1]__parametric",
    unique_tag=dataset_name,
    nlive=50,
)

analysis = al.AnalysisInterferometer(dataset=interferometer)

result_1 = search.fit(model=model, analysis=analysis)

"""
__Model (Search 2)__

We use the results of search 1 to create the lens model fitted in search 2, where:

 - The lens galaxy's total mass distribution is again an `EllIsothermal` and `ExternalShear` [7 parameters].
 - The source-galaxy's light uses a `DelaunayMagnification` pixelization [2 parameters].
 - This pixelization is regularized using a `Constant` scheme which smooths every source pixel equally [1 parameter]. 

The number of free parameters and therefore the dimensionality of non-linear parameter space is N=10.

The priors of the majority of the `EllIsothermal` and `ExternalShear` initialized using the results of search 1.
Пример #15
0
def make_analysis_interferometer_7():
    return al.AnalysisInterferometer(dataset=make_interferometer_7())