Пример #1
0
def vmatrix(gra, keys=None, rng_keys=None):
    """ v-matrix for a connected graph

    :param gra: the graph
    :param keys: restrict the v-matrix to a subset of keys, which must span a
        connected graph
    :param rng_keys: keys for a ring to start from
    """
    if keys is not None:
        gra = subgraph(gra, keys)

    assert is_connected(gra), "Graph must be connected!"

    # Start with the ring systems and their connections. If there aren't any,
    # start with the first terminal atom
    if ring_systems(gra):
        vma, zma_keys = connected_ring_systems(gra, rng_keys=rng_keys)
    else:
        term_keys = sorted(terminal_heavy_atom_keys(gra))
        if term_keys:
            start_key = term_keys[0]
        else:
            start_key = sorted(atom_keys(gra))[0]

        vma, zma_keys = start_at(gra, start_key)

    rem_keys = atom_keys(gra) - set(zma_keys)
    vma, zma_keys = continue_vmatrix(gra, rem_keys, vma, zma_keys)
    return vma, zma_keys
Пример #2
0
def linear_segments_atom_keys(gra, lin_keys=None):
    """ atom keys for linear segments in the graph
    """
    ngb_keys_dct = atoms_neighbor_atom_keys(without_dummy_atoms(gra))

    lin_keys = (dummy_atoms_neighbor_atom_key(gra).values()
                if lin_keys is None else lin_keys)

    lin_keys = [k for k in lin_keys if len(ngb_keys_dct[k]) <= 2]

    lin_segs = connected_components(subgraph(gra, lin_keys))

    lin_keys_lst = []
    for lin_seg in lin_segs:
        lin_seg_keys = atom_keys(lin_seg)
        if len(lin_seg_keys) == 1:
            key, = lin_seg_keys
            lin_keys_lst.append([key])
        else:
            end_key1, end_key2 = sorted([
                key
                for key, ngb_keys in atoms_neighbor_atom_keys(lin_seg).items()
                if len(ngb_keys) == 1
            ])
            ngb_keys_dct = atoms_neighbor_atom_keys(lin_seg)

            key = None
            keys = [end_key1]
            while key != end_key2:
                key, = ngb_keys_dct[keys[-1]] - set(keys)
                keys.append(key)
            lin_keys_lst.append(keys)

    lin_keys_lst = tuple(map(tuple, lin_keys_lst))
    return lin_keys_lst
Пример #3
0
def connected_components(gra):
    """ connected components in the graph
    """
    cmp_gra_atm_keys_lst = connected_components_atom_keys(gra)
    cmp_gras = tuple(subgraph(gra, cmp_gra_atm_keys, stereo=True)
                     for cmp_gra_atm_keys in cmp_gra_atm_keys_lst)
    return cmp_gras
Пример #4
0
def continue_vmatrix(gra, keys, vma, zma_keys):
    """ continue a v-matrix for a subset of keys, starting from a partial
    v-matrix
    """
    gra = subgraph(gra, set(keys) | set(zma_keys))

    vma, zma_keys = continue_connected_ring_systems(gra, keys, vma, zma_keys)

    # Complete any incomplete branches
    branch_keys = _atoms_missing_neighbors(gra, zma_keys)
    for key in branch_keys:
        vma, zma_keys = complete_branch(gra, key, vma, zma_keys)

    return vma, zma_keys
Пример #5
0
def distance_bounds_matrices(gra, keys, sp_dct=None):
    """ initial distance bounds matrices

    :param gra: molecular graph
    :param keys: atom keys specifying the order of indices in the matrix
    :param sp_dct: a 2d dictionary giving the shortest path between any pair of
        atoms in the graph
    """
    assert set(keys) <= set(atom_keys(gra))

    sub_gra = subgraph(gra, keys, stereo=True)
    sp_dct = atom_shortest_paths(sub_gra) if sp_dct is None else sp_dct

    bounds_ = path_distance_bounds_(gra)

    natms = len(keys)
    umat = numpy.zeros((natms, natms))
    lmat = numpy.zeros((natms, natms))
    for (idx1, key1), (idx2, key2) in itertools.combinations(
            enumerate(keys), 2):
        if key2 in sp_dct[key1]:
            path = sp_dct[key1][key2]
            ldist, udist = bounds_(path)
            lmat[idx1, idx2] = lmat[idx2, idx1] = ldist
            umat[idx1, idx2] = umat[idx2, idx1] = udist
        else:
            # they are disconnected
            lmat[idx1, idx2] = lmat[idx2, idx1] = closest_approach(
                gra, key1, key2)
            umat[idx1, idx2] = umat[idx2, idx1] = 999

        assert lmat[idx1, idx2] <= umat[idx1, idx2], (
            "Lower bound exceeds upper bound. This is a bug!\n"
            "{}\npath: {}\n"
            .format(string(gra, one_indexed=False), str(path)))

    return lmat, umat
Пример #6
0
def continue_connected_ring_systems(gra,
                                    keys,
                                    vma,
                                    zma_keys,
                                    rsys=None,
                                    check=True):
    """ generate the connected ring systems for a subset of keys, continuing on
    from a partial v-matrix

    The subset must have at least one neighbor that already exists in the
    v-matrix

    :param gra: the graph for which the v-matrix will be constructed
    :param keys: the subset of keys to be added to the v-matrix
    :param vma: a partial v-matrix from which to continue
    :param zma_keys: row keys for the partial v-matrix, identifying the atom
        specified by each row of `vma` in order
    :param rsys: optionally, pass the ring systems in to avoid recalculating
    """
    gra = subgraph(gra, set(keys) | set(zma_keys))
    sub = subgraph(gra, keys)
    if check:
        assert is_connected(gra), "Graph must be connected!"

    if rsys is None:
        rsys = sorted(ring_systems(sub), key=atom_count)

    rsys = list(rsys)

    while rsys:
        # Find the next ring system with a connection to the current
        # v-vmatrix and connect them
        conn = False
        for idx, rsy_keys in enumerate(map(atom_keys, rsys)):
            if set(zma_keys) & rsy_keys:
                # ring systems are connected by one bond -- no chain needed
                keys = set(zma_keys) & rsy_keys
                assert len(keys) == 1, (
                    "Attempting to add redundant keys to v-matrix: {}".format(
                        str(keys)))
                key, = keys

                conn = True
            else:
                # see if the ring systems are connected by a chain
                keys = shortest_path_between_groups(gra, zma_keys, rsy_keys)

                # if so, build a bridge from the current v-matrix to this next
                # ring system
                vma, zma_keys = continue_chain(gra,
                                               keys[:-1],
                                               vma,
                                               zma_keys,
                                               term_hydrogens=False)
                key = keys[-1]

                conn = bool(keys is not None)

            if conn:
                rsy = rsys.pop(idx)
                break

        assert keys is not None, "This is a disconnected graph!"

        # 2. Decompose the ring system with the connecting ring first
        rng_keys = next(rks for rks in rings_atom_keys(rsy) if key in rks)
        keys_lst = ring_system_decomposed_atom_keys(rsy, rng_keys=rng_keys)

        # 3. Build the next ring system
        vma, zma_keys = continue_ring_system(gra, keys_lst, vma, zma_keys)

    return vma, zma_keys