from autotune import TuningProblem from autotune.space import * # problem space task_space = None input_space = Space([Real(-15, 15, name=f'x_{i}') for i in range(10)]) output_space = Space([Real(-inf, inf, name='y')]) def myobj(point: dict): def ackley(x, a=20, b=0.2, c=2 * pi): x = np.asarray_chkfinite(x) # ValueError if any NaN or Inf n = len(x) s1 = sum(x**2) s2 = sum(cos(c * x)) return -a * exp(-b * sqrt(s1 / n)) - exp(s2 / n) + a + exp(1) x = np.array([point[f'x_{i}'] for i in range(len(point))]) objective = ackley(x) return objective Problem = TuningProblem(task_space=None, input_space=input_space, output_space=output_space, objective=myobj, constraints=None, model=None)
from autotune import Space, TuningProblem task_space = Space(matrix=["boyd1.mtx"]) input_space = Space(m=(10, 100), n=(10, 100)) problem = TuningProblem(task_space, input_space) print('problem.to_json: ', problem.to_json(), end='\n') problem_copy = TuningProblem(json_repr=problem.to_json()) print(problem_copy)