rays_dict = fi1.get_rays_dict() #rays_dict = {"startz":[0], "starty": [0], "radius": [16], # "anglex": [0., 0.1832595], # "rasterobj":raster.RectGrid()} #wavelength = [0.5875618e-3, 0.4861327e-3, 0.6562725e-3] #numrays = 50 sample_param = 'bundle' (initialbundle, meritfunctionrms) = get_bundle_merit(osa, s, sysseq, rays_dict, fi1.numrays, fi1.wavelengths, whichmeritfunc='sgd2', error='error2', sample_param=sample_param, penalty=True, penaltyVerz=True) # ----- plot the original system # --- set the plot setting pn = np.array([1, 0, 0]) up = np.array([0, 1, 0]) fig = plt.figure(1) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212)
# II---------------------- optical system analysis # --- 1. elem sysseq=fi1.get_sysseq(elem1); # ----------- define optical system analysis object osa = OpticalSystemAnalysis(s, sysseq) # III ----------- defining raybundles for optimization and plotting rays_dict=fi1.get_rays_dict() (initialbundle, meritfunctionrms) = get_bundle_merit(osa, s, sysseq, rays_dict, fi1.numrays, fi1.wavelengths, whichmeritfunc='standard', error='error2') # ----- plot the original system # --- set the plot setting pn = np.array([1, 0, 0]) up = np.array([0, 1, 0]) fig = plt.figure(1) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) ax1.axis('equal') ax2.axis('equal') # --- plot the bundles and draw the original system
rays_dict = fi1.get_rays_dict() #rays_dict = {"startz":[0], "starty": [0], "radius": [16], # "anglex": [0., 0.1832595], # "rasterobj":raster.RectGrid()} #wavelength = [0.5875618e-3, 0.4861327e-3, 0.6562725e-3] #numrays = 50 sample_param = 'wave' (initialbundle, meritfunctionrms) = get_bundle_merit(osa, s, sysseq, rays_dict, fi1.numrays, fi1.wavelengths, whichmeritfunc='sgd', error='error2', sample_param=sample_param, penalty=False) # ----- plot the original system # --- set the plot setting pn = np.array([1, 0, 0]) up = np.array([0, 1, 0]) fig = plt.figure(1) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) ax1.axis('equal')
# ----------- define optical system analysis object osa = OpticalSystemAnalysis(s, sysseq) # III ----------- defining raybundles for optimization and plotting rays_dict = fi1.get_rays_dict() #TODO In Landos code noch wavelength and numrays einpflegen wavelength = [0.58749e-3] #, 0.6562725e-3] numrays = 10 (initialbundle, meritfunctionrms) = get_bundle_merit(osa, s, sysseq, rays_dict, fi1.numrays, fi1.wavelengths, whichmeritfunc='standard2', error='error2', penaltyVerz=True) # ----- plot the original system # --- set the plot setting pn = np.array([1, 0, 0]) up = np.array([0, 1, 0]) fig = plt.figure(1) #ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(111) #ax1.axis('equal') ax2.axis('equal')
"startz": [-7], "starty": [0], "radius": [5], "anglex": [0.03, -0.05], "raster": raster.RectGrid() } # rastertype = raster.RectGrid() # define wavelengths wavelength = [0.5875618e-3, 0.4861327e-3] #, 0.6562725e-3] numrays = 10 (initialbundle, meritfunctionrms) = get_bundle_merit(osa, s, sysseq, rays_dict, numrays, wavelength, whichmeritfunc='standard_error2') # ----- plot the original system # --- set the plot setting pn = np.array([1, 0, 0]) up = np.array([0, 1, 0]) fig = plt.figure(1) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) ax1.axis('equal') ax2.axis('equal')